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Abstract 

 

This work studies multivariate polynomials over finite fields and their applications in 

computer science. The study of polynomials in computer science is not new. Polynomials 

have found applications in the areas of algorithm design, cryptography, circuit lower 

bounds, computational learning and coding theory, to name a few key examples. In this 

work we continue the research of polynomials in computer science, and focus on four 

main areas: we study polynomials as a model of computation, where we explore several 

fundamental problems, such as the relation between exact and approximate computation, 

the resources required to generate hard functions, and the importance of the base field; 

we study distributions which are pseudorandom for polynomials, and provide as 

applications lower bounds for bounded depth circuits; we study coding theoretic 

questions related to codes arising from polynomials, such as Reed-Muller and BCH 

codes; and we study property testing for polynomials, which is motivated by recent 

advances in additive combinatorics. In all these areas, we establish new results which 

emerge from an improved understanding of the fundamental properties of polynomials 

over finite fields. 
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Chapter 1

Overview

This work studies polynomials over finite fields and their applications in computer science.
Polynomials are basic mathematical objects, studied in various areas such as algebra, anal-
ysis and combinatorics. The study of polynomials in computer science is also not new.
Polynomials have found applications in the areas of algorithm design, cryptography, circuit
lower bounds, computational learning and coding theory, to name a few key examples. In
this work we continue the line of research of the role of polynomials over finite fields in
computer science, where we focus our attention on four different research areas.

Our first line of research views polynomials as a computational model and studies several
fundamental problems in this model. Our second line of research studies pseudorandom-
ness for polynomials, that is, distributions which cannot be distinguished from the uniform
distribution by polynomials. The third line of research studies coding theoretic problems
related to codes arising from polynomials, such as Reed-Muller and BCH codes. The fourth
line of research studies property testing for polynomials, that is, testing whether a given
function is close to a polynomial. This fourth line of research is motivated by several recent
developments in additive combinatorics.

It is important to note that all the research presented here focuses on polynomials defined
over constant-sized finite fields, for example over F2. This is different from another line of
research arising in arithmetic complexity, which studies polynomials defined by arithmetics
circuits, which are usually defined over very large (or infinite) fields.

We proceed to review some of the mathematical background required for this work and
the previous works in complexity theory related to polynomials. We then provide a high-level
description of the results presented in this work. A detailed description of these results is
provided in the next chapter.

Finite fields. A finite field is a finite set F endowed with two operations: addition and
multiplication, which are commutative, transitive and distributive. The simplest example for
a finite field is F2 = {0, 1}, the field of 2 elements, where addition corresponds to exclusive-
or and multiplication to the and operation. More generally, for any prime p there exists a
(unique) finite field with p elements Fp = {0, 1, . . . , p−1}, where addition and multiplication
corresponds to these operations modulo p and for every prime power q = pt there exists a
(unique) finite field Fq with q elements. In this work we focus on polynomials defined over

8
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finite fields (i.e. no infinite fields).

Polynomials. Let F be a finite field. A multi-variate polynomial over F in n variables
x1, . . . , xn is a linear combination of monomials, where a monomial is a product of several
variables. The total degree of a polynomial is the maximal number of variables participating
in a monomial, counting multiplicities. For example,

f(x1, x2, x3, x4) = x1 + 2x2x
2
3 + x1x3 + x2x4

is a polynomial in 4 variables of total degree 3. In general, we can write polynomials as

f(x1, . . . , xn) =
∑

e1,...,en≥0

αe1,...,enx
e1
1 . . . xenn

where αe1,...,en ∈ F and the total degree of f is the maximal e1+. . .+en for which αe1,...,en 6= 0.
Unless stated otherwise, whenever we speak of the degree of f we mean the total degree of
f , and we denote it by deg(f).

Polynomial representation of functions Working over finite fields, it is often conve-
nient to identify functions with polynomials. Fix a finite field Fq. We can think about
polynomials f(x1, . . . , xn) over Fq as computing a function f : Fnq → Fq and identify polyno-
mials that compute the same function. To this end, we use the following identity: for any
element a ∈ Fq we have that aq = a. When q is prime this is known as Fermat’s little theo-
rem. Thus, we can reduce any individual degree of a variable in a monomial modulo q and
not effect the function computed by the polynomial. This gives a canonical representation
for functions f : Fnq → Fq as polynomials. That is, for any function f : Fnq → Fq there exists
a unique set of coefficients {αe1,...,en ∈ Fq : 0 ≤ e1, . . . , en ≤ q − 1} such that

f(x1, . . . , xn) =
∑

0≤e1,...,en≤q−1

αe1,...,enx
e1
1 . . . xenn .

We refer to this as the polynomial representation of the function f .
Representations of functions as polynomials have been studied intensively in computer

science [NS92, Pat92, Bei93, BBR94]. This algebraic view of functions has found appli-
cations in diverse areas including circuit lower bounds [Raz87, Smo87, BRS, ABFR94],
computational learning [KM93, LMN93, KS01, MOS03] and explicit combinatorial con-
structions [Gro00, Gro02, Gop06b, Efr09]. As a purely algebraic model of computation,
polynomial representations lead to some natural complexity measures such as exact degree,
approximation degree and sparsity needed to represent a function.

Present work In this work, we focus on four main areas, where polynomials over finite
fields seem to be the most prevalent.

1. Polynomials as a computational model: polynomials form a very natural model of
computation in the area of algebraic algorithms, such as matrix multiplication, integer

9
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and polynomial factorization, discrete Fourier transforms and more. Computational
models for polynomials have been intensively studied in the area of arithmetic circuit
complexity, where the focus is commonly on high degree polynomials over large (or
infinite) fields. In this work we focus on polynomials over small fields and study vari-
ous questions relating to such polynomials when viewed as a computational model. In
particular, we study the relation between exact computation and approximate compu-
tation as well as functions which are hard for this model of computation. Polynomials
can be used to simulate many computational models, either exactly or with some
small error. We study the computational power of polynomials in these settings and
in particular the importance of the base field over which the polynomials are defined.

2. Pseudorandom generators for polynomials: We study a specific problem relating
to the computational power of polynomials: can one construct small efficient distribu-
tions which can ”fool” polynomials, in the sense that low-degree polynomials cannot
distinguish such distributions from genuine uniform distributions? Such distributions
can then by used to ”fool” other computational models which can be simulated by
polynomials (for example small depth circuits). In this work we study this problem
in two contexts: when the polynomials are defined over a finite field (which is the
more natural algebraic setting) and when the polynomials are defined only over binary
inputs (which is the setting required for proving results for circuit lower bounds).

3. Polynomials in coding theory: Polynomials form the basis for very natural codes,
such as Reed-Solomon, Reed-Muller and BCH codes. Despite being well-studied codes,
many fundamental problems in coding theory which relate to these codes remain un-
solved. In this work we study the relation between properties of polynomials and the
properties of these codes, and manage to achieve new results in coding theory based
on the improved understanding of properties of polynomials. These coding theoretic
results include: an asymptotic estimate on the weight distribution and list-decoding
size of Reed-Muller codes; a surprising sparsity result on the weights of low-degree
Reed-Muller codes; and a new local-decoding results for affine invariant codes, which
are an extension of dual-BCH codes.

4. Property testing for polynomials: Property testing is an area which studies
whether one can infer global properties of objects just by looking at small fragments
of these objects. Polynomials fit this framework when one tries to estimate whether
a specific given function is close to a low-degree polynomial and wishes to do so by
only examining a small number of evaluations of this function. Such problems arise
naturally in the area of PCPs (Probabilistically Checkable Proofs) and also in the field
of additive combinatorics, where it is related to several recent advances and is one of
the key problems in this area. In this work we prove hardness results on the problem
of estimating whether a function is close to a low-degree polynomial.

In the following chapter we provide a detailed summary of the results conveyed in this
work. For each research area, we survey its history, its larger framework and related results
obtained in this work. The full details regarding each specific work are presented in the
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subsequent chapters and are grouped according to the herein outlined four main areas. We
also provide a list of open problems for further research.
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Chapter 2

Summary of the results

2.1 Polynomials as a computational model

Polynomials form a very natural computational model, when one studies algebraic problems,
either with regards to specific algorithms, or for proving lower bounds for various computa-
tional tasks. Consider an n× n matrix. Its determinant is a polynomial in the n2 elements
of the matrix of degree n. It can be efficiently computed in polynomial time using Gaussian
elimination. On the other hand, the permanent of the matrix is also a polynomial of degree n
in n2 variables, however no known efficient algorithm is known for computing it. In fact, the
best algorithm requires time exponential in n. Thus, computing the determinant is ”easy”,
while computing the permanent is believed to be ”hard”.

In order to define formally the computational resources required to compute a polynomial,
it is common to consider a circuit computing the polynomial. The inputs to the circuit are the
variables of the polynomial (and possibly constants in the field), and each gate may compute
either the sum or the product of its inputs. The complexity of the circuit is measured by its
size (the number of gates it contain) and its depth (the maximal length between an input
and the output of the circuit). This model of computation has been studied extensively in
the field of arithmetic computational complexity. The common framework in this field is to
assume that the base field is very large, and to explore the structure of circuits computing
various polynomials.

The main focus of this work is on polynomials over small finite fields, for example over F2,
the field of two elements. This is a completely different framework, and in fact, many results
which are proved in arithmetic computational complexity are false for small finite fields, and
are true only if the base finite field is large enough. The most basic complexity measure for
polynomials (in particular over small finite fields) is their degree. One may consider other,
more delicate, complexity measures, such as the sparsity of the polynomial (the number of
monomials with non-zero coefficient) or the minimal size of a circuit computing it. Still,
many basic problems relating to the degree of a polynomial as a computational complexity
measure are still far from being understood. Thus, we feel safe to limit our discussion to the
degree of a polynomial as a measure for its complexity.

We study three questions in regards to the computational power of polynomials. The first
one relates to the difference between exact computation and approximation, which we explore
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in Subsection 2.1.1. The second relates to the problem of finding functions which cannot be
approximated by low-degree polynomials, which we discuss in Subsection 2.1.2. The third
relates to understanding the importance of the base field in polynomial representation of
functions. We study this problem in Subsection 2.1.3.

2.1.1 Exact computation vs. approximation

In general, the problem of exactly computing a function is harder than just approximating
the functions. It is often the case that the computational resources required to approximate
a function are far below those required to exactly compute it. In a joint work with Tali
Kaufman [KL08] we show that when one studies this distinction in the computational model
of polynomials, then these two problems of exact computation and approximation are in fact
equivalent, at least from a qualitative point of view.

We start by formally defining the notion of approximation. In order to keep this discussion
as simple as possible, let us focus on functions over F2, i.e. functions f : Fn2 → F2. We say
a function g : Fn2 → F2 can approximate f with error ε if

Pr
x1,...,xn

[g(x1, . . . , xn) = f(x1, . . . , xn)] ≥ 1 + ε

2
.

Otherwise put, the function g has a bias of ε over a random guess for the output of f .
Consider now the problem of approximation for polynomials by lower-degree polynomials

(that is, approximation by ”weaker” functions in our model of computation). Consider for
example the polynomial

f(x1, . . . , xn) = x1 + x2(x3 + . . .+ xn).

This is a quadratic polynomial. However, it can be approximated by the linear polynomial
x1, since

Pr
x1,...,xn

[f(x1, . . . , xn) = x1] = 3/4.

Hence, the polynomial f can be approximated by a polynomial of lower degree. In fact,
the polynomial f can be computed exactly by a function of 3 linear polynomial: x1, x2 and
x3 + . . .+xn. So, in this specific example, f was approximated by a single linear polynomial,
but in fact was also computed exactly by a function of a small number of linear polynomials.

This main problem we study is whether this is always the case. We prove that indeed it is.
If f can be approximated with error ε by a lower degree polynomial g, then in fact one may
find a constant number k of lower degree polynomials (where the constant k depends only
on the degree and the error of approximation, but crucially not on the number of variables),
such that f can be computed by these polynomials.

Theorem (Approximation implies exact computation by several polynomials). Let
f(x1, . . . , xn) be a degree-d polynomial over F2. Assume there exists a polynomial
g(x1, . . . , xn) over F2 of degree at most d− 1, such that

Pr
x1,...,xn

[f(x1, . . . , xn) = g(x1, . . . , xn)] ≥ 1 + ε

2
.
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Then there exist k = k(d, ε) polynomials g1, . . . , gk of degree at most d− 1, and a composing
function G : Fk2 → F2, such that

f(x1, . . . , xn) = G(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

The theorem can also be extended over arbitrary prime finite fields. It generalizes a
previous result of Green and Tao [GT07] which held only for large fields, i.e. when |F| > d.
Our result, on the other hand, holds for all constant finite fields and all constant degrees,
and in particular over F2 which is of significance in computer science.

The theorem can be used to prove the following corollary. Consider the following com-
putational model: functions which can be computed by a small number of low-degree poly-
nomials. Say a function has degree (d, k) if it can be computed by some function on k
polynomials of degree d. That is, f : Fn2 → F2 has degree (d, k), if there exist k polynomials
g1, . . . , gk of degree at most d, and some composing function G : Fk2 → F2 such that

f(x1, . . . , xn) = G(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

We show that if a polynomial of degree d can be approximated by a function of degree
(d − 1, k), then it can be computed exactly by a function of degree (d − 1, k′), where k′

depend only on k, d, ε. Crucially, it does not depend on the number of variables n. That is,
if we fix d and think of k, ε as arbitrary constants, then exact computation and approximation
are qualitatively equivalent.

Corollary (Equivalence of approximation and computation by several polynomials). Let
f(x1, . . . , xn) be a degree-d polynomial over F2. Assume there exists a function g : Fn2 → F2

of degree (d− 1, k), such that

Pr
x1,...,xn

[f(x1, . . . , xn) = g(x1, . . . , xn)] ≥ 1 + ε

2
.

Then there exists k′ = k′(k, d, ε) polynomials g1, . . . , gk′ of degree at most d − 1, and a
composing function G : Fk′2 → F2, such that

f(x1, . . . , xn) = G(g1(x1, . . . , xn), . . . , gk′(x1, . . . , xn)).

As before, the corollary can also be extended over arbitrary prime finite fields. The proofs
of the theorem and corollary are given in the full paper, which can be found in Chapter 4.

2.1.2 Hard functions for polynomials

Two boolean functions f, g : {0, 1}n → {0, 1} are said to be ε-correlated if

Pr[f(x) = g(x)] ≥ 1 + ε

2
.

A function f : Fn → F is said to be ε-correlated with a set of functions F ⊆ Fn → F
if it is ε-correlated with at least one function g ∈ F . We are interested in functions that
have a low correlation with the set of degree d polynomials; namely, functions that cannot
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be approximated by any polynomial of total degree at most d. How complex must such a
function be? We use the most natural measure for complexity in these settings, which is the
degree of the function when considered as a polynomial.

A simple probabilistic argument shows that for any constant δ < 1 and for d < δn,
a random function has an exponentially small correlation with degree d − 1 polynomials.
However, a random function is complex since, with high probability, its degree is at least n−2.
In a joint work with Ido Ben-Eliezer and Rani Hod [BEHL09], we study how well a random
degree d polynomial can be approximated by any lower degree polynomial, and show that
with very high probability a random polynomial of degree d cannot be approximated by
polynomials of lower degree in a strong sense. Thus, if we want to find functions that are
uncorrelated with degree d− 1 polynomials, considering degree d polynomials is enough.

The correlation of a typical degree d polynomial with the set of lower degree polynomials
is a natural question in arithmetic complexity. More generally, the study of the correlation
of functions with the set of low degree polynomials is interesting from both coding theory
and complexity theory points of view.

Complexity Theory. Approximation of functions by low degree polynomials is one of the
main tools used in proving lower bounds for constant depth circuits. For example, [Raz87]
and [Smo87] provided an explicit function Mod3 that cannot be computed by a constant
depth circuit with a subexponential number of And, Or and Xor gates. The proof combines
two arguments:

1. Any constant depth circuit of subexponential size has a very high correlation (that
is, 1− o (1)) with some polynomial of degree nε;

2. Such a low degree polynomial has a correlation of at most 2/3 with Mod3. (In fact,
this is true for any polynomial of degree at most ε

√
n for some constant ε.)

The best known constructions of explicit functions that cannot be approximated by low
degree polynomials (see, e.g., [BSK08, BNS, Raz87, Smo87, VW08] fall into two categories:

• For large degree bounds (i.e., bounds as d < nΩ(1)), there exists a symmetric function
with a correlation of at most O (1/

√
n) with degree O (

√
n) polynomials;

• For small degree bounds (i.e., bounds as d < log n) there are explicit functions having
a correlation of at most exp(−n/cd) with degree d polynomials for some constants c
(best known is c = 2).

Certain applications, for instance, pseudorandom generator constructions via the Nisan–
Wigderson construction [NW94], require a function having an exponentially small correla-
tion with low degree polynomials. This is only known for degrees up to log n, while for larger
degrees the best known correlation bound is only polynomial in 1/n. Finding explicit func-
tions with a better correlation is an ongoing quest with limited success. For more details,
see a survey by [Vio09].
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Coding Theory. The Reed–Muller code RM (n, d) is a linear code in which codewords
correspond to polynomials (over F) in n variables of total degree at most d. This family of
codes is one of the most studied objects in coding theory (see, e.g., [MS83]). Nevertheless,
determining the weight distribution of these codes (for d ≥ 3) is a long standing open
problem. Interpreted in this language, our result gives a new tail estimate on the weight
distribution of Reed–Muller codes.

Our results We show that, with very high probability, a random degree d polynomial
has an exponentially small correlation with polynomials of lower degree, that is, of degree at
most d−1. We prove this for degrees ranging from a constant up to δmaxn, where 0 < δmax < 1
is an absolute constant. All results hold for large enough n.

Theorem (Random degree d polynomial cannot be approximated by lower degree polyno-
mials). There exist constants 0 < δmax < 1 and c, c′ > 0 such that the following holds. For
every d ≤ δmaxn let f be a random n-variate polynomial of degree d. Then the probability

that f has a correlation 2−cn/d with polynomials of degree at most d− 1 is at most 2−c
′( n
≤d),

where
(
n
≤d

)
=
∑d

i=0

(
n
i

)
.

The proof of the theorem is given in the full paper, which can be found in Chapter 5.

2.1.3 Representation of boolean functions as polynomials in dif-
ferent characteristics

The study of polynomial representations of boolean functions dates at least as far back as the
1960’s, when they arose in various contexts including switching theory [Mur71], voting theory
[Cho61] and machine learning [MP68]. Representations of boolean functions over finite fields,
especially over F2 were studied by coding theorists in the context of Reed-Muller codes, see
[MS83, Chapters 13-14] and the references therein. The codewords of the code RM2(d, n)
are all boolean functions f : {0, 1}n → {0, 1} where deg2(f) ≤ d, while received words are
arbitrary functions f .

Polynomial representations have proved especially useful in circuit complexity [Bei93]
where a natural lower bound technique is to relate concrete complexity measures (such as
circuit-size) which we wish to bound, to purely algebraic complexity measures. Examples
of this paradigm include the Razborov-Smolensky lower bounds for AC0[p] [Raz87, Smo87],
which relates the circuit size to the polynomial degree needed to approximate f over Fp, and
the work of Beigel et al. [BRS] and Aspnes et al. [ABFR94] which relate AC0 circuit size
with approximations by real polynomials.

Polynomial representations are among the most powerful tools in computational learning.
The best learning algorithms for many basic concept classes, including but not limited to
decision trees [KM93], DNF formulae [KS01], AC0 circuits [LMN93, JCJS02], juntas [MOS03]
and halfspaces [ARKS, KKMS05] all proceed by showing that the concept class to be learned
has some nice polynomial representation. In particular, the algorithm for learning juntas of
[MOS03] exploits a connection between deg2(f) and the sparsity of its Fourier polynomial.
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Polynomial representations of boolean functions have also found applications to con-
structing combinatorial objects such as set systems [Gro00, Gro02], Ramsey graphs
[Gro00, Gop06b] and locally decodable codes [Efr09].

As a purely algebraic model of computation, polynomial representations lead to some
natural complexity measures such as exact degree, approximation degree and sparsity needed
to represent a function. In this chapter, we are primarily concerned with the polynomial
degree of a function, when studied over different characteristics. Let f : {0, 1}n → {0, 1}
be a boolean function. The degree of f in characteristic k, denoted degk(f), is the minimal
degree of a polynomial over Zk computing f ; that is, it is the degree of the unique multilinear
polynomial P (X1, . . . , Xn) ∈ Zk[X1, . . . , Xn] such that P (x) = f(x) for every x ∈ {0, 1}n.
We denote by deg(f) the degree of f over R. We note that if k′|k then degk′(f) ≤ degk(f)
(since the polynomial over Zk can be reduced modulo k′) and that for the same reason,
degk(f) ≤ deg(f) for all k.

The degree of a boolean function may be very dependent on the characteristic. Consider
for example the parity function,

Parity(x1, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn.

The parity function can be expressed by a linear function over F2; it is simply the sum of
the bits modulo 2. However, when considered modulo any odd k, the polynomial degree of
parity is n, since the (unique) multilinear polynomial computing it is given by

Parity(x1, . . . , xn) =
1

2

(
1− (1− 2x1)(1− 2x2) . . . (1− 2xn)

)
.

Thus, we have deg2(Parity) = 1 and degk(Parity) = n for all odd k. The main question
studied is whether this is the general case. In a joint work with Parikshit Gopalan and Amir
Shpilka [GLS09] we show that this is an instance of a more general principle:

A function on all n variables which has low degree in characteristic p is bound to have high
degree in every other prime characteristic q 6= p.

Theorem (A boolean function with low degree modulo p must have high degree modulo all
other q). Let f : {0, 1}n → {0, 1} be a boolean function which depends on all n variables. Let
p 6= q be distinct primes. Then

degq(f) ≥ n

dlog2 pe degp(f)p2 degp(f)
.

This gives a lower bound of Ω(n1−o(1)) on degq(f) as long as degp(f) = o(log n). This
bound is close to the best possible, as there exist functions on all n variables (such as
the addressing function [NS92]) where deg(f) ≤ log n and hence degp(f) ≤ log n for all
characteristics p. Thus, one cannot get nontrivial lower bounds on degq(f) once degp(f)
exceeds log n.

Nisan and Szegedy showed that any function on n variables must have degree at least
deg(f) ≥ log n−O(log log n) [NS92]. An interesting consequence of our main theorem is the
following analog of the Nisan-Szegedy bound for non-prime power moduli.
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Corollary (Boolean functions must have high degree modulo composites). Let f : {0, 1}n →
{0, 1} be a boolean function which depends on all n variables. Suppose m is not a prime
power, and p is its smallest prime divisor. We have

degm(f) ≥ 1

2
logp n− logp logp n−

1

2
logpdlog2 pe .

This corollary is interesting as it illuminates a sharp difference between degrees over
composite numbers and over primes. A simple way to construct boolean functions of degree
O(1) over Fp is to take any constant degree polynomial P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] and
raise it to the power p− 1. This construction fails for composite m since there is no analog
of Fermat’s little theorem. The corollary shows that indeed any polynomial modulo m
computing a boolean function requires degree Ω(log n), as it does over the reals.

We can also obtain the following stronger bound for the real degree of f (i.e. deg(f)) in
the case that f has low degree modulo some prime p. The proof of the following theorem
follows an adaptation of the original proof of Nisan and Szegedy.

Lemma (Boolean functions with low degree modulo p must have high real degree). Let p
be a prime and f : {0, 1}n → {0, 1} be a boolean function which depends on all n variables.
Then

deg(f) ≥ n

2degp(f)
.

The results above show a very basic relation between the degrees of boolean functions
over different characteristics. A natural question to ask is what happens if we relax the
requirement and only consider polynomials over Fq that approximate a low degree polynomial
over Fp. Similarly to the case of degree 1 polynomials that was studied in [Smo87], we prove
that low degree polynomials modulo p are hard to even approximate by polynomials in other
characteristics.

Theorem (Boolean functions with low degree modulo p cannot be well-approximated by
low-degree polynomials modulo q). Let f : {0, 1}n → {0, 1} be a function depending on all
n variables with degp(f) = d. Then, for any q 6= p and any Fq polynomial Q(x1, . . . , xn) :

Fnq → {0, 1}, satisfying degq(Q) = o

(√
n

dp3d

)
, it holds that

Pr
x∈{0,1}n

[f(x) = Q(x)] ≤ 1− εp−d ,

where ε depends only on p, q.

We note that both the error bound of 1−p−O(d) and the degree bound of o(
√
n) are close

to optimal; there are polynomials of degree d over Fp that are 0 on the boolean hypercube
with probability 1−2−d, hence they have trivial approximations over Fq. Secondly, the Modp
function (and indeed every symmetric function) can be 1−ε approximated by polynomials of
degree c(ε)

√
n over Fq [BGL06], despite being hard to approximate for polynomials of lower

degree.
As a corollary of the theorem for inapproximability of low degree polynomials over Fp

by polynomials over Fq, we get that if a boolean function has low degree modulo p, then

18



www.manaraa.com

the function requires large AC0[q] circuits for any prime q 6= p. Several of the known lower
bounds for AC0[q] are for functions like Par and the Modpk function where p 6= q that are
easily seen to be low-degree polynomials in some characteristic. Our result generalizes this to
give a very general class of hard functions for AC0[q], namely all functions that have degree
o(log n) modulo p 6= q.

Theorem (Boolean functions with low degree modulo p require large AC0[q] circuits). Let
p, q be distinct primes. Let f : {0, 1}n → {0, 1} be a boolean function which depends on all n
variables with degp(f) = o(logp n). Then any AC0[q] circuit of depth t computing f requires

size at least exp(n(1−o(1))/2t).

It is not hard to see that most known lower bounds for AC0[q] circuits follow from
the theorem above. For example, the lower bound for Modpk of [Smo87] follows from the
observation that degp(Modpk) ≤ pk (see e.g. [BGL06]). Additionally, it gives several new
lower bounds, for instance it shows that every quadratic form on n variables over F2 requires
large AC0[q] circuits, for q 6= 2. Though we note that this theorem does not imply Razborov’s
lower bound for Majority.

Summarizing, our results show that for a boolean function, having low degree mod p, or
even being close to a low degree polynomial mod p, is a “singular” event, in the sense it can
only occur for at most one characteristic p. The proofs of the theorems above are given in
the full paper, which can be found in Chapter 6.

2.2 Pseudorandom generators for low-degree polyno-

mials

Pseudorandomness is the theory of generating objects that “look random” despite being
constructed using little or no randomness. A primary application of pseudorandomness is
to address the question: Are randomized algorithms more powerful than deterministic ones?
That is, how does randomization trade off with other computational resources? Can every
randomized algorithm be converted into a deterministic one with only a polynomial slowdown
(i.e. does BPP = P) or with only a constant-factor increase in space (i.e. does RL = L)? The
study of both these questions has relied on pseudorandom generators that fool algorithms
of limited computational powers.

A pseudorandom distribution is a distribution over a domain, which cannot be distin-
guished from the uniform distribution over this domain by ”weak” alogrithms. A pseudo-
random generator (PRG for short) is an explicit function whose output distribution is a
pseudorandom distribution. Formally, a PRG over a domain D (one should think of D
as either the boolean cube {0, 1}n or as Fnp ) for a family of tests T is an explicit function
G : Dr → Dn such that no test T ∈ T can distinguish a random output of G from truly
uniform input elements in Dn. Namely,

max
T∈T

∣∣∣∣ Pr
x∈Dr

[T (G(x)) = 0]− Pr
x∈Dn

[T (x) = 0]

∣∣∣∣ ≤ ε .

Ideally, one would like to have the seed r as short as possible and the error ε to be as small
as possible. A pseudorandom generator is considered efficient if the seed length is O(log n)
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(as in this case, for some applications, one can enumerate over all seeds to find a ‘good’ one).
Pseudorandom generators have been a major object of study in theoretical computer science
for several decades, and have found applications in the area of computational complexity,
cryptography, algorithms design and more (see [Gol08, AB09]).

A family of tests that was widely considered in the literature is low degree polynomials
over finite fields. Before stating the formal definition of a PRG for low degree polynomials
we fix some notation: let f be a function, and D a distribution over the inputs of f . We
denote by f(D) the output distribution of f given inputs sampled according to D. For a set
S we denote by f(S) the output distribution given that the inputs are uniformly sampled in
S (for example, f({0, 1}n) is the distribution of f over uniform input bits). The statistical
distance between two distributions D′,D′′ is given by sd(D′,D′′) = 1

2

∑
e |PrD′ [e]− PrD′′ [e]|.

Definition (Pseudorandom generators for degree d polynomials). A distribution D taking
values in Fnp is pseudorandom for degree d polynomials over Fp with error ε if, for any degree
d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f(Fnp ) are ε-close in statistical
distance. A function G : {0, 1}r → Fnp is a pseudorandom generator for degree d polynomials
over Fp, if the output distribution of G, given uniformly sampled seeds, is a pseudorandom
distribution for degree d polynomials.

We discuss pseudorandom generators in Subsection 2.2.1, and prove related lower bounds
for such generators in Subsection 2.2.2. We also study a variant of this model, where we
consider polynomials evaluated only on the boolean cube. In this case, a pseudorandom
distribution is a distribution over {0, 1}n (instead of Fnp ) which cannot be distinguished from
the uniform distribution over {0, 1}n by low-degree polynomials. The motivation for this
model is that it has tight relations to circuit lower bounds.

Definition (Pseudorandom bit-generators for degree d polynomials). A distribution D taking
values in {0, 1}n is pseudorandom for degree d polynomials over Fp with error ε if, for any
degree d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f({0, 1}n) are ε-close
in statistical distance. A function G : {0, 1}r → {0, 1}n is a pseudorandom bit-generator for
degree d polynomials over Fp, if the output distribution of G, given uniformly sampled seeds,
is a pseudorandom distribution for degree d polynomials.

We give a construction of a pseudorandom bit-generator for linear polynomials in Sub-
section 2.2.3, and a construction for arbitrary constant degrees in Subsection 2.2.4, where we
also use it to construction an efficient and explicit pseudorandom generators for the circuit
class CC0[p], the class of constant depth circuits composed from Modp gates.

2.2.1 Pseudorandom generators for low-degree polynomials

Fix a finite field Fp. We study the problem of constructing explicit and efficient pseudoran-
dom generators against low-degree multivariate polynomials over Fp.

The case of pseudorandom generators against linear polynomials, usually called small-bias
generators or epsilon-biased generators, was first studied (over F2) by Naor and Naor [NN93],
who gave PRGs with O(log n) seed length. This was later generalized by Alon, Goldreich,
H̊astad and Peralta [AGHP90] to arbitrary fields. These constructions have a seed length
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which is optimal up to a constant multiplicative factor. The construction of small-bias
generators is a major tool in derandomization, PCPs and lower bounds (see [BSSVW03] and
the references within for details regarding small-bias generators).

The generalization of the problem to constant-degree polynomials was first studied by
Luby, Velickovic, and Wigderson [LVW93]. Their results apply, in fact, to the more general
model of constant depth circuits. In the context of constant degree polynomials, they give
an explicit construction of a PRG requiring exp(O(

√
log n/ε)) random bits.

Bogdanov [Bog05] studied the problem of constructing PRG for polynomials over large
fields. He gave a construction of a PRG in large fields, where the minimum field size required
for his construction is polynomial in the degree, the required error and the log of the number
of variables. In these settings, his construction is optimal up to polynomial factors. The
proof of his result uses techniques and results from algebraic geometry and computational
algebra.

A breakthrough result for small finite fields was obtained by Bogdanov and Viola [BV07].
They presented a novel approach for constructing a PRG for low-degree polynomials over
small fields. Their construction is the sum of d independent small-bias generators. That is, if
G1 : {0, 1}r → {0, 1}n is a small-bias generator, then their generator Gd : {0, 1}rd → {0, 1}n
is given by

Gd(s1, . . . , sd) = G1(s1)⊕G1(s2)⊕ . . .⊕G1(sd),

where s1, . . . , sd ∈ {0, 1}r and the exclusive-or is performed coordinate-wise. Bogdanov and
Viola showed that, if a conjecture in additive combinatorics known as the inverse conjecture
for the Gowers norm holds, then their construction is a PRG for degree-d polynomials. At
the time, the inverse conjecture for the Gowers norm was known to hold only for degrees 2
and 3, and was conjectured to hold for all constant degrees. Thus, their construction was
known to be correct only for quadratic and cubic polynomials.

Our work [Lov08] was inspired by the work of Bogdanov and Viola, with the goal of
making their construction unconditional, i.e., not relying on any unproven conjectures. We
prove that the sum of 2d independent small-bias generators is pseudorandom against degree-d
polynomials, without relying on any unproven conjectures.

Theorem (Pseudorandom generator for degree d polynomials). There exists a universal
constant c > 0 such that the following holds. Let G1 be a small-bias generator with error ε2

cd
.

Then the sum of 2d independent copies of G1 is pseudorandom against degree-d polynomials
with error ε. In particular, this gives a pseudorandom generator for degree-d polynomials
with error ε using 2cd log(|F|n/ε) random bits for the seed.

The proof of the theorem is given in the full paper, which can be found in Chapter 7.
Subsequent to this work, there were advances on two fronts.

First, the inverse conjecture for the Gowers norm was shown to be false for degrees
d ≥ 4 by Green and Tao [GT07] and independently by Lovett, Meshulam, and Samorodnit-
sky [LMS08]. A more refined inverse conjecture for the Gowers norm was suggested, and it
was proved by Bergelson, Tao and Ziegler [BTZ09, TZ09].

Additionally, Viola [Vio08] proved the correctness of the original construction of [BV07]
without using the inverse conjecture for the Gowers norm, or any other unproven conjectures,
thus making the original construction of [BV07] unconditionally correct. The result presented
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here can thus be seen as an intermediate step in a sequence of works. The proof of Viola uses
some of the techniques developed in this work, in addition to some of the original techniques
introduced in [BV07] and some clever new ideas.

2.2.2 Explicit lower bound for fooling polynomials by the sum of
small-bias generators

Fix a finite field Fp. Small-bias distributions are distributions over Fnp which are pseu-
dorandom against all linear functions; that is, any non-zero linear functional in the field
elements is distributed almost uniformly. Viola [Vio08], following works of Bogdanov and
Viola [BV07] and Lovett [Lov08] showed that the sum of d copies of small-bias generators is
a pseudorandom generator against degree d polynomials.

Bogdanov and Viola have shown already in their original work [BV07] that taking d
copies is essentially tight with respect to the number of copies needed; using a counting
argument, they show that for a fixed error, any generator with output length n that fools
all degree d polynomials must have seed length at least d · log n − O(1). Thus, for every
generator with shorter seed, there exists a polynomial of degree at most d that distinguishes
a random output of the generator from truly random field elements. The seed length of
a small-bias generator with bias ε is O(log(n/ε)). Thus, this shows that the sum of d − 1
small-bias generators (with sufficiently large bias) cannot fool degree d polynomials.

This argument does not rule out the possibility that if one chooses small-bias generators
with very small bias (say, even exponentially small in n), then one may get a generator
for degree d polynomials by summing less than d copies of the small-bias generators. In
a joint work with Yoav Tzur [LT09], we show that even when the bias of the small-bias
generators can be exponentially small, still d independent copies are required in order to fool
polynomials of degree d.

We give an explicit construction of a small-bias generator, and an explicit polynomial of
degree d + 1, such that this polynomial always evaluates to zero on inputs which are sums
of d copies of the small-bias generator, and is almost uniform when evaluated over uniform
inputs. Furthermore, our small-bias generator construction allows for exponentially small
bias, whereas the proof of [BV07] allows only polynomially small bias.

Theorem (Sum of d small-bias generators cannot fool polynomials of degree d + 1). For
every n, d ∈ N and ` ≥ 2d + 1, there exists an explicit small-bias generator G1 : F2n

p → F`np
with bias ε ≤ `/pn and with the following property. Let Gd : (F2n

p )d → F`np be the sum of d
independent samples of G1. Then there exists an explicit polynomial f(x1, . . . , x`n) of degree
d+ 1 over Fp such that

• The polynomial f evaluates to zero on any output of Gd.

• The distribution of f , when applied to uniform inputs, is d
pn

-close to the uniform dis-
tribution over Fp.

The proof the theorem is given in the full paper, which can be found in Chapter 8. We
note that Alon et al. [ABEK08] showed almost tight lower bounds for the size of the sample
space required to fool all degree d polynomials with given error ε. Their bounds relate to the
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size of a general sample space, and not to the specific construction we are interested in, the
sum of d independent samples of a small-bias distribution. Thus, their result does not imply
the bounds of the form we are interested in - that we need to sum d copies of small-bias
generator (and not less) in order to fool degree d polynomials.

2.2.3 Pseudorandom bit-generators for modular sums

The motivation for studying pseudorandom bit-generators for modular sums (i.e. linear
functions over finite fields evaluated over bits) is motivated by the goal of constructing
efficient pseudorandom generators against small-space computations, an instance of which
is modular sums.

Small-space algorithms are algorithms which use little memory in order to perform calcu-
lations. An important open problem is whether randomization aids in computational tasks.
While this problem is still wide open when considering polynomial-time computations, the
analog of this problem for small-space computations has seen quite a few advances, and seems
to be at reach. In particular, pseudorandom generators that fool space-bounded algorithms
[AKS, BNS, Nis92, INW94] were highly instrumental in the study of the RL vs. L problem
(e.g. used in the best known derandomization of RL [SZ99]).

While the currently available space-bounded generators are extremely powerful tools,
their seed length is still suboptimal. For example, if we want to fool a log n-space algorithm
then known generators require log2 n truly random bits (the seed) in order to generate
up to polynomially many pseudorandom bits. On the other hand, for several interesting
special cases we do know generators with almost optimal seed length. The special case
which serves as a motivation for our work is that of small-biased generators [NN93]. These
generators produce n bits X1, X2, . . . , Xn that fool all linear tests modulo 2. In other words,
for each subset T of the bits, the sum Σi∈TXi mod 2 is uniformly distributed up to bias
ε. Explicit constructions of ε-biased generators are known with seed-length O(log(n/ε)),
which is optimal up to the hidden constant [NN93]. Even though linear tests may seem very
limited, ε-biased generators have turned out to be very versatile and useful derandomization
tools [NN93, MNN94, HPS93, Nao92, AM95, AR94, BSSVW03, BV07, Lov08, Vio08].

Given the several applications of distributions that fool linear tests modulo 2, it is natural
to consider the question of fooling modular sums for larger moduli. It turns out that the
notion of small-biased generators can be generalized to larger fields. Such generators produce
a sequence X1, X2, . . . , Xn of elements in a field F that fool every linear test over F [Kat89,
AIK+90, RSW93, EGL+98, AM95].

In a joint work with Omer Reingold, Luca Trevisan and Salil Vadhan [LRTV09], instead,
we consider a different generalization of ε-biased generators where we insist on bit-generators.
Namely we would like to generate a sequence X1, X2, . . . , Xn of bits that fool every linear
test modulo a given number M . For every sequence a1, a2, . . . , an of integers in ZM =
{0, 1, . . . ,M−1} we want the sum Σiai ·Xi mod M to have almost the same distribution (up
to statistical distance at most ε) as in the case where the Xi’s are uniform and independent
random bits. (Note that this distribution may be far from the uniform distribution over ZM ,
particularly when only a few ai’s are nonzero.) It turns out that even for M = 3 and even if
we limit all the ai’s to be either ones or zeros, the best generators that were known prior to
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this work are generators that fool general space-bounded computations [Nis92, INW94], and
required a seed of length O(log2 n). Therefore, obtaining better pseudorandom bit generators
that fool modular sums may be considered a necessary step towards improved space-bounded
generators. In addition, we consider this notion to be a natural generalization of small-bias
generators, which is a central derandomization tool.

We give two constructions of pseudorandom bit generators that fool modular sums. Sim-
ilarly to [MST06], each construction is actually comprised of two generators: one that fools
summations Σiai ·Xi in which only relatively few coefficients ai are not zero (the “low-weight”
case) and one that fools summations Σiai ·Xi such that many coefficients ai are not zero (the
“high weight” case). The motivation is that fooling low-weight sums and fooling high-weight
sums are tasks of a different nature. In the high-weight case, if Ri are truly random bits, then
Σiai · Ri mod M is almost uniformly distributed in ZM . Thus, in analyzing our generator,
we just need to argue that Σiai · Xi mod M is close to uniform, where X1, . . . , Xn is the
output of the generator.

On the other hand, in the low-weight case the distribution may be far from uniform and
therefore we may need to imitate the behavior of a random sequence of bits more closely.

In each construction, we shall present two generators: one that is pseudorandom against
low-weight sums, and one that is pseudorandom against high-weight sums. We shall then
combine them by evaluating them on independently chosen seeds and XORing the two
resulting sequences. We sketch below the two constructions. For full details, we refer to
the full paper which can be found at Chapter 9.

Construction Based on Pseudorandom Generators for Polynomials In our first
construction, we handle the case of M = 3 and any other fixed prime modulus M (in
fact, our construction works also for any fixed prime power). For these cases, our seed
length is O(log(n/ε)) as in the case of ε-biased generators (but the hidden constant depends
exponentially on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal known genera-
tors that construct a small-bias distribution X1, . . . , Xn of field elements, while our goal is to
generate bits. A natural approach to construct a bit generator would be to sample a sequence
of field elements X1, . . . , Xn from a small bias distribution, to pick a function g : F→ {0, 1}
appropriately, and to output the bits sequence g(X1), . . . , g(Xn). Unfortunately the small
bias property for g(X1), . . . , g(Xn) does not seem to follow from the small bias property of
X1, . . . , Xn.

If, however, we start from a sequence of field elements X1, . . . , Xn that fools polynomials
over F, then we can make such an approach work, because g can be chosen to be itself a
polynomial (of degree Θ(|F|)). However, note that when |F| is odd, g cannot be balanced,
and thus g(X1), . . . , g(Xn) are only indistinguishable from independent biased coins. Thus,
this approach only works when the sum has sufficiently high weight so that both biased
and unbiased random bits will yield a sum that is almost uniformly distributed over |F|;
specifically we need at least k non-zero coefficients ai, where k = O(M2 log 1/ε). For fixed
M , there are known constructions [BV07, Lov08, Vio08] of pseudorandom generators that
fool polynomials of degree d over F = ZM , M prime, and which only require seed length
OM,d(log n/ε).
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In order to fool low-weight sums, we observe that a bit generator X1, . . . , Xn which is ε-
almost k-wise independent fools, by definition, every sum

∑
i aiXi mod M of weight at most

k, and that such generators are known which require only seed length O(log n+ k+ log 1/ε).
A similar construction was independently discovered by Meka and Zuckerman [MZ09]

Construction Based on the INW Generator In our second construction, we give a
pseudorandom bit generator that fools sums modulo any given M (not necessarily prime)
with seed length O(log n + log(M/ε) log(M log(1/ε))). In both the low-weight and high-
weight cases, this generator relies on versions of the Impagliazzo–Nisan–Wigderson [INW94]
pseudorandom generator for space-bounded computation. Of course, modular sums are a
special case of space-bounded computations, and thus we could directly apply the INW
generator. But this would require seed length larger than log2 n. We obtain better bounds
by more indirect use of the INW generator inside our construction.

The most interesting technical contribution underlying this construction is a new analysis
of the derandomized graph squaring operation of Rozenman and Vadhan [RV05], which
captures the effect of using the INW generator to derandomize random walks on graphs.
Here we study the analogue of derandomized squaring for taking products of two distinct
Cayley graphs over an abelian group (namely ZM). The advantage of the new analysis is
that it handles graphs that have distinct bounds on their expansion, and works for bounding
each eigenvalue separately. This is then used to produce pseudorandom-walks where each
step is taken on a different abelian Cayley graph (rather than pseudorandom walks on a
single graph as in [RTV06, RV05]).

2.2.4 Pseudorandom bit-generators for low-degree polynomials

We consider the problem of constructing pseudorandom bit-generators against degree d poly-
nomials, generalizing the previous construction from linear polynomials to arbitrary constant
degree polynomials. The motivation for this is that such generators will fool in particular
the circuit class CC0[p], which is the class of constant depth circuits consisting of only Modp
gates. We start by surveying the current state of knowledge with regards to pseudorandom
generators against constant depth circuits. We then proceed to show the relating between
pseudorandom bit-generators and the class CC0[p], and then sketch in high level the con-
struction of pseudorandom bit-generators against low-degree polynomials.

The family of constant depth circuits which probably received the most attention in
computational complexity is the class AC0. This is the class of constant-depth circuits with
unbounded fan-in AND, OR and NOT gates. H̊astad [H̊as86] showed that the PARITY
function cannot be approximated by any polynomial size AC0 circuit. I.e., that no polynomial
size AC0 circuit agrees with parity on more than 1

2
+ exp(−n) fraction of inputs. In other

words, the correlation of PARITY with AC0 is exponentially small. This result was later
used by Nisan [Nis91] for constructing efficient pseudorandom generators for AC0 (these
pseudorandom generators use r = polylog(n) bits). Recently, following a breakthrough by
Bazzi [Baz07], Braverman [Bra09] showed that any polylog-wise independent distribution
is pseudorandom for AC0 circuits, thus settling a conjecture of Linial and Nisan [LN90].
AC0[p] is another well studied class of circuits, consisting of all constant-depth circuits with
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unbounded fan-in AND, OR, NOT and MODp gates (a MODp gate outputs 1 if the sum
of its inputs is divisible by p, and 0 otherwise). In contrast to the impressive success in
constructing pseudorandom generators for AC0, no PRGs are known for AC0[p]. One reason
is that no strong correlation lower bounds are known for this class. Razborov and Smolensky
[Raz87, Smo87] proved exponential lower bounds for AC0[p] circuits and their results also
imply correlation lower bounds, albeit those are much weaker than the ones known for AC0.
Namely, [Raz87, Smo87] showed that the MODq function has polynomially small correlation
with AC0[p] when p and q are co-prime. The class of AC0[m] where m is not a prime power
is only very weakly understood; in particular, currently we cannot separate it from NP!

Motivated by the problem of constructing pseudorandom generators for AC0[p], in a joint
work with Partha Mukhopadhyay and Amir Shpilka [LMS10] we study a natural subclass -
CC0[p] circuits. The class CC0[p] is the class of constant depth circuits using only MODp

gates. While exponential lower bounds for this class follow from the work of Smolensky
[Smo87], no pseudorandom generator better than the one constructed in [LVW93] (whose
seed length is r = exp(

√
log n)) is known for it. Our main result is an explicit pseudorandom

generator fooling any CC0[p] circuit while using only r = O(log n) random bits, for any fixed
error ε > 0. Actually, our construction gives pseudorandom bit-generators for low-degree
polynomials over finite fields, from which the result for CC0[p] follows: Let Fp be a prime
finite field. The MODp function can be computed by a degree p− 1 polynomial over Fp

MODp(x1, . . . , xn) = (x1 + . . .+ xn)p−1 (mod p) .

Hence, any depth k circuit in CC0[p] can be computed by a polynomial over Fp of degree
d = (p − 1)k. Thus, in order to fool CC0[p] we have to fool the distribution induced
by low degree polynomials over Fp, when evaluated on inputs from the boolean cube. In
other words, we have to generalize the aforementioned results of [LRTV09, MZ09] from
linear polynomials to any constant degree polynomials. This motivates the definition of bit-
pseudorandom generators for polynomials. We recall the definition for the convenience of
the reader.

Definition 2.1 (Bit-pseudorandom distributions for degree d polynomials). A distribution
D taking values in {0, 1}n is bit-pseudorandom for degree d polynomials over Fp with error ε
if, for any degree d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f({0, 1}n)
are ε-close in statistical distance. A function G : {0, 1}r → {0, 1}n is a bit-pseudorandom
generator for degree d polynomials over Fp if the output distribution of G over a uniform
seed is a bit-pseudorandom distribution for degree d polynomials.

Notice the difference between this definition and the definition of pseudorandom distri-
butions is that in the latter case, one has to fool the distribution of the polynomial when
evaluated over the entire space and not just over the boolean cube.

As mentioned above, PRGs for polynomials over small finite fields were studied in several
works [LVW93, BV07, Lov08, Vio08]. The best result to date is by Viola.

Theorem (Theorem 1 in [Vio08]). There exists an explicit and efficient function G :
{0, 1}r → Fnp for r = O(d · log(pn) + 2d · log(1/ε)) such that G({0, 1}r) is pseudorandom
for degree d polynomials over Fp with error ε.

26



www.manaraa.com

The problem of construction bit-pseudorandom generators for linear polynomials (i.e. the
case of d = 1) was first studied by [LRTV09, MZ09] in the context of small-space computa-
tions. Before describing their generator we need a few notations. For a = (a1, . . . , an) ∈ Fnp
define ap−1 = (ap−1

1 , . . . , ap−1
n ) ∈ {0, 1}n to be the p − 1 power of a. Similarly for a distri-

bution D ⊂ Fnp , define Dp−1 ⊂ {0, 1}n by raising each element of D to the p − 1 power.
[LRTV09, MZ09] discovered the following construction for a bit-pseudorandom generator
for linear polynomials over Fp: the bitwise-XOR of the p − 1 power of a pseudorandom
distribution for degree (p− 1) polynomial over Fp, and a k-wise independent distribution.

Our main result extends their result to any constant degree polynomial. We prove that the
following is a bit-pseudorandom distribution for degree d polynomials over Fp: the bitwise-
XOR of the p − 1 power of a pseudorandom distribution for degree ((p − 1)d) polynomials
over Fp, and a k-wise independent distribution.

Theorem (Pseudorandom bit-generators for degree d polynomials). Let Fp be an odd prime
finite field, d ≥ 1 an integer and ε > 0 an error parameter. Then there exist δ = δ(p, d, ε)
and k = k(p, d, ε) such that the following holds. Let D ⊂ Fnp be a pseudorandom distribution
for degree ((p − 1)d) polynomials with error δ. Let K ⊂ {0, 1}n be a k-wise independent
distribution. Then, the bitwise-XOR of the two distributions Dp−1⊕K is a bit-pseudorandom
distribution for degree d polynomials over Fp with error ε. The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function, and cp,d > 0 is some constant which
depends on p and d.

An immediate corollary is that there exists an efficient and explicit pseudorandom gen-
erator G : {0, 1}r → {0, 1}n fooling any depth-k circuit in CC0[p] with error ε, where
r = cp,k,ε · log n.

Corollary (Pseudorandom generators for CC0[p]). Let p be an odd prime number and ε > 0
an error parameter. For any k > 0 there exists an explicit pseudorandom generator G :
{0, 1}r → {0, 1}n, where r = cp,k,ε · log n, such that for any depth k circuit C ∈ CC0[p], the
statistical distance between the two distributions C({0, 1}n) and C(G({0, 1}r)) is at most ε.

The proof of our main theorem is based on two new structural results for low degree
polynomials, over finite fields, which may be of independent interest:

The first result is on the Fourier spectrum of such polynomials. Let f : Fnp → Fp be a
function. The α-Fourier coefficient of f , for α ∈ Fnp , is defined as

f̂(α) = Ex∈Fnp
[
ωf(x)−〈x,α〉] ,

where ω = e2πi/p is a primitive p-root of unity, and 〈x, α〉 =
∑n

i=1 xiαi is the inner product
of x and α. The structural result we prove is that the Fourier coefficients of any low-degree
polynomial cannot be spread over many disjoint sets. In other words, we show that one can
always find a small set S ⊂ [n] such that almost all Fourier coefficients intersect S (that is,
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have some nonzero entry inside S). We note that while our main theorem is interesting only
for odd p (as for p = 2 it reduces to the case of pseudorandom distributions), this structural
result is non-trivial also for polynomials over F2.

Theorem (The Fourier spectrum of low-degree polynomials over finite fields). For every
prime finite field Fp, degree d ≥ 1 and error ε > 0 there exists a constant C(d, ε) ≤ (1/ε)O(4d)

such that the following holds. Let f(x1, . . . , xn) be a degree d polynomial over Fp. Then there
exists a subset S ⊂ [n] of size at most |S| ≤ C(d, ε) such that∑

α∈Fnp :α 6=0,αS=0

|f̂(α)|2 ≤ ε ,

where αS is the restriction of α to coordinates in S. In words, almost all nonzero Fourier
coefficients of f intersect S.

Our second structural result concerns the structure of polynomials with the following prop-
erty. Denote with Up the distribution over {0, 1}n where each bit is chosen independently to
be 0 with probability 1/p and 1 with probability 1−1/p. We call Up the p-biased distribution.
We show that if the distributions f(Up) and f({0, 1}n) are ε-far, then f can be approximated,
over {0, 1}n, by a function of a small number of lower degree polynomials. To formally state
our theorem we need some definitions.

Definition (Bit-Rank). Let g : {0, 1}n → Fp be a function. The d-bit-rank of g, denoted
bitrankd(g), is the minimal number of degree d polynomials over Fp required to compute g
over {0, 1}n. That is, bitrankd(g) = k where k is the minimal number such that there exist
k degree d polynomials f1, . . . , fk : Fnp → Fp and a function Γ : Fkp → Fp such that for all
x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

The definition of bit-rank differs from the more common definition of rank, which is the
minimal number of degree d polynomials required to compute a function g : Fnp → Fp over
the entire input domain Fnp . For example, consider the function g(x) =

∑
i 6=j xixj over Fp

for p > 2. We have that the 1-bit-rank of g is 1, as for all x ∈ {0, 1}n

g(x) = (x1 + . . .+ xn)2 − (x2
1 + . . .+ x2

n) = (x1 + . . .+ xn)2 − (x1 + . . .+ xn) .

Thus, for x ∈ {0, 1}n, g(x) is determined by the linear function `(x) = x1 + . . .+ xn. Notice
that as a quadratic polynomial over Fp, the rank of g (i.e. the minimal number of linear
functions required to compute g on inputs from Fnp ) is either n− 1 or n, depending on p.

Our second structural result is the following.

Theorem (Structure of bit-biased polynomials). Let f(x1, . . . , xn) be a degree d polynomial
over Fp such that the statistical distance between the distributions f(Up) and f({0, 1}n) is
at least ε. Then, for every δ > 0, there exists a function g : {0, 1}n → Fp such that

Prx∈{0,1}n [g(x) 6= f(x)] ≤ δ and bitrankd(g) ≤ pO(c) where c = (p/δε)O(4(p−1)(d+1)).

The proofs of all theorems are given in the full paper, which can be found in Chapter 10.

28



www.manaraa.com

2.3 Polynomials in coding theory

A code over a finite field Fp is a large subset C ⊂ Fnp , with the guarantee that any two distinct
codewords in C are ”far apart”; that is, they have only a small number of coordinates where
they agree. Formally, C is said to be an (n, k, d) code if C ⊂ Fnp , |C| = pk and for every two
distinct codewords c′, c′′ ∈ C we have that the distance between them is at least d, where the
distance between c′ and c′′ is defined as

dist(c′, c′′) = |{1 ≤ i ≤ n : c′i 6= c′′i }|.

The parameter n is called the length of the code; k is the rate of the code; and d is the
minimal distance of the code. A code is said to be linear if the set C forms a linear space.
Almost all codes studies are linear, and we will restrict our attention from now on only to
linear codes. We note that the minimal distance in linear codes is equivalent to the minimal
weight of a nonzero codeword, where the weight of a codeword c ∈ C is defined as

wt(c) = |{1 ≤ i ≤ n : ci 6= 0}|.

The main interest in coding theory is to find good codes, which simultaneously have
good rate k = Ω(n) and good distance d = Ω(n) (when the base field Fp is large compared
to n, even better distance can be obtained), and to find efficient decoding procedures for
correcting words close to codewords to the correct codewords.

Polynomials form the basis for some of the more basic and intensively studied families of
codes, namely Reed-Solomon, Reed-Muller and BCH codes. Reed-Solomon codes correspond
to evaluations of univariate polynomials f : Fp → Fp of bounded degree; Reed-Muller codes
correspond to evaluations of multivariate polynomials f : F2n → F2 of bounded total degree;
Generalized Reed-Muller codes are extension of this to f : Fpn → Fp; and BCH codes
correspond to evaluations of univariate polynomials f : Fpn → Fpn of bounded degree.

The minimal distance of all the aforementioned codes is relatively well understood, but
slightly more complicated properties are yet to be fully determined, despite the simplicity of
the codes definitions. One of these properties is the weight distribution of the codes: this is
the number of codewords of every prescribed weight. In the case of Reed-Muller codes this is
equivalent to the following question: how many polynomials f : Fnp → Fp of total degree at
most d are there with a prescribed number of zeros. The weight distribution of Reed-Muller
codes is fully understood for polynomials of degree 1 and 2, but is unsettled already for cubic
polynomials. In a joint work with Tali Kaufman and Ely Porat [KLP10], we provide the
first tight asymptotic estimation for this number when studying polynomials over F2. Prior
to our work, this problem was settled only for small distances (up to 2.5 times the minimal
distance of the code, by work of Azumi et al. [AKT76]). Furthermore, we extend this to
obtain tight bounds also on the list-decoding size of Reed-Muller codes: this is the maximal
number of codewords within a prescribed distance from some element g ∈ Fn2 (which is not
necessarily a codeword). Combining this with previous results of Gopalan et al. [GKZ08] we
get a list-decoding algorithm. We sketch this result in more details in Subsection 2.3.1.

A second work [Lov09] studies the weight distribution of Reed-Muller codes of con-
stant degree but of unbounded number of variables. That is, we consider the set Ap(d) =
{Prx∈Fnp [f(x) = 0]} where f : Fnp → Fp ranges over all polynomials over Fp in n variables of
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total degree at most d. We prove a somewhat surprising property about the zero probabil-
ities of bounded degree polynomials: the set Ap(d) is not dense; in fact all its limit points
are of the form `

pk
where `, k ∈ N. We discuss this result in Subsection 2.3.2.

A third work with Tali Kaufman [KL19] studies affine invariant codes. These are codes
C = {f : Fpn → Fp} which are invariant under affine transformations. That is, if f(x) ∈ C
then also f(ax+ b) ∈ C for any a ∈ Fpn \ {0}, b ∈ Fpn . Understanding these families of codes
turns out to be tightly related to understanding BCH codes and their duals. Previous work
of Kaufman and Sudan [KS08] showed that any such code which is sparse (that is, where
C = poly(n)) is locally testable. We extend this result to exponentially large codes, that is,

codes of size |C| ≤ pp
O(n)

. We sketch this in Subsection 2.3.3.

2.3.1 Weight Distribution and List-Decoding Size of Reed-Muller
Codes

The weight distribution of an error correcting code counts, for every given weight param-
eter, the number of codewords with weight bounded by the given parameter. The weight
distribution of a code is the main characteristic of the code, and governs the behavior of the
code, from both theoretical and practical aspects.

Understanding the weight distribution of Reed-Muller codes is a 30-year-old standing
open question in coding theory. The last progress on this question was made by Azumi,
Kasami and Tokura [AKT76] that characterized the codewords of Reed-Muller codes of
weight up to twice the minimal distance of the code, and hence obtained bounds for the
weight distribution that apply till twice the minimal distance of the code. In this work we
study the weight distribution of Reed Muller codes and provide asymptotically tight bounds
that apply to all distances.

The problem of list-decoding an error correcting code is the following: given a received
word and a distance parameter find all codewords of the code that are within the given
distance from the received word. List-decoding is a generalization of the more common
notion of unique decoding in which the given distance parameter ensures that there can
be at most one codeword of the code that is within the given distance from the received
word. The notion of list-decoding has numerous practical and theoretical implications. The
breakthrough results in this field are due to Goldreich and Levin [GL89] and Sudan [Sud97]
who gave efficient list decoding algorithms for the Hadamard code and the Reed-Solomon
code. See surveys by Guruswami [Gur04] and Sudan [Sud00] for further details. In complex-
ity, list-decodable codes are used to perform hardness amplification of functions [STV99].
In cryptography, list-decodable codes are used to construct hard-core predicates from one
way functions [GL89]. In learning theory, list decoding of Hadamard codes implies learning
parities with noise [KM93].

In this work we study the question of list-decoding Reed-Muller codes. Specifically, we
are interested in bounding the list sizes obtained for different distance parameters for the
list-decoding problem. Our work provides asymptotically tight bounds that apply to all
distances. The improved bounds, imply improved algorithms for list-decoding Reed-Muller
codes.

Our results are obtained by making a new connection between computer science tech-
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niques used for studying low-degree polynomials and the discussed coding theory questions.
Using this connection we manage to progress significantly towards resolving these two im-
portant open problems.

Our proofs are technically relatively simple. We view this as evidence to the importance
of this new connection, since these were considered as open problems, resistent to the more
common coding theory tools. We view this as the main innovation of our work.

Reed–Muller codes Reed-Muller codes are a fundamental and well studied family of
codes. RM(n, d) is a linear code, whose codewords f ∈ RM(n, d) : Fn2 → F2 are evaluations
of polynomials in n variables of total degree at most d over F2. In this work we study the
code RM(n, d) when d� n, and are interested in particular in the case of constant d.

The following facts regarding RM(n, d) are straight-forward: It has block length of 2n,

dimension
∑

i≤d
(
n
i

)
and minimum relative distance 2n−d

2n
= 2−d.

Weight distribution of Reed-Muller codes We now formally define the weight distri-
bution of a code, and discuss previous known bounds for the weight distribution of Reed-
Muller codes.

Definition (Relative weight). The relative weight of a function/codeword f : Fn2 → F2 is
the fraction of non-zero elements,

wt(f) =
1

2n
|{x ∈ Fn2 : f(x) = 1}|

Definition (Accumulative weight distribution). The accumulative weight distribution of
RM(n, d) at a relative weight α is the number of codewords up to this weight, i.e.

A(α) = |{p ∈ RM(n, d) : wt(p) ≤ α}|

where 0 ≤ α ≤ 1.

It is well-known that for any p ∈ RM(n, d) which is not identically zero, wt(p) ≥ 2−d.
Thus, A(2−d−ε) = 1 for any ε > 0. Kasami and Tokura [KT70] characterized the codewords
in RM(n, d) of weight up to twice the minimal distance of the code (i.e up to distance 21−d).
Based on their characterization one could conclude the following.

Corollary (Corollary 10 in [GKZ08]).

A(21−d − ε) ≤ (1/ε)2(n+1)

Corollary 11.1 and simple lower bounds (which we show later, see Lemma 11.5) show
that A(α) = 2Θ(n) for α ∈ [2−d, 21−d − ε] for any ε > 0 (and constant d).
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List-decoding size of Reed-Muller codes We now formally define the list-decoding
size of a code, and discuss previous known bounds for the list-decoding size of Reed-Muller
codes. Moreover we discuss known list-decoding algorithms for Reed-Muller codes. We start
with the following definition.

Definition (Relative distance between two functions). The relative distance between two
functions f, g : Fn2 → F2 is defined as

dist(f, g) = Px∈Fn2 [f(x) 6= g(x)]

Our work focuses on understanding the asymptotic growth of the list size in list-decoding
of Reed-Muller codes, as a function of the distance parameter. Specifically we are interested
in obtaining bounds on the following.

Definition (List-decoding size). For a function f : Fn2 → F2 let the ball at relative distance
α around f be

B(f, α) = {p ∈ RM(n, d) : dist(p, f) ≤ α}

The list-decoding size of RM(n, d) at distance α, denoted by L(α), is the maximal size of
B(f, α) over all possible functions f , i.e.

L(α) = max
f :Fn2→F2

|B(f, α)|

In a recent work, Gopalan, Klivans and Zuckerman [GKZ08] proved that for distances
up to the minimal distance of the code, the list-decoding size of Reed-Muller codes remains
constant.

Theorem (Theorem 11 in [GKZ08]).

L(2−d − ε) ≤ O
(
(1/ε)8d

)
Their result of bounding the list-decoding size of Reed-Muller codes is inherently limited

to work up to the minimum distance of the code, since it uses the structural theorem of
Kasami and Takura on Reed-Muller codes [KT70], which implies a bound on the weight
distribution of Reed-Muller codes that works up to twice the minimum distance of the code.

Additionally, the work of [GKZ08] has developed a list-decoding algorithm for RM(n, d)
whose running time is polynomial in the worst list-decoding size and in the block length of
the code.

Theorem (Theorem 4 in [GKZ08]). Given a distance parameter α and a received word
R : Fn2 → F2, there is an algorithm that runs in time poly(2n, L(α)) and produces a list of
all p ∈ RM(n, d) such that dist(p,R) ≤ α.

Since Gopalan et al. could obtain non-trivial bounds on the list-decoding size for distance
parameter α that is bounded by the minimum distance of the Reed-Muller code, their algo-
rithm running time could be analyzed only for α that is less than the minimum distance of
the code. This supports our earlier statement, that the crux of the analysis of list-decoding
algorithms is in bounding the list-decoding size.
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Our Results The weight distribution of RM(n, d) codes beyond twice the minimum dis-
tance was widely open prior to our work. See e.g. Research Problem (15.1) in [MS83] and
the related discussion in that chapter. In this work we provide asymptotic bounds for the
weight distribution of RM(n, d) that applied for all weights 2−d ≤ α ≤ 1/2. We state now
our results for constant d, where the notation O(·),Ω(·),Θ(·) hides constants depending only
on d. Our first main result gives exact boundaries on the range of α for which A(α) = 2Θ(n`),
for any ` = 1, 2, ..., d, showing there are ”cut-off distances”, at which the accumulative weight
distribution jumps from 2Θ(n`) to 2Θ(n`+1).

Theorem (First main theorem - accumulative weight distribution). Let 1 ≤ ` ≤ d− 1 be an
integer, and let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ A(α) ≤ (1/ε)O(n`)

and A(α) = 2Θ(nd) for any α ≥ 1/2.

We also address the more general problem of bounding the list-decoding size. Gopalan et
al. [GKZ08] left as an open problem the question of bounding the list-decoding size of Reed-
Muller codes beyond the minimal distance. We give tight bounds on the list-decoding size
of Reed–Muller codes that apply to all distances. In fact, we show that the behavior of the
list-decoding size is asymptotically identical to that of the accumulative weight distribution.

Theorem (Second main theorem - list-decoding size). Let 1 ≤ ` ≤ d− 1 be an integer, and
let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ L(α) ≤ (1/ε)O(n`)

and L(α) = 2Θ(nd) for any α ≥ 1/2.

Using our results combined with the previous results of Gopalan et al. [GKZ08], we obtain
the following algorithmic result for list-decoding Reed-Muller codes.

Theorem (List-decoding algorithm). Let R : Fn2 → F2 be a received word. Let α ∈
[2`−d−1, 2`−d − ε] be a required distance parameter, where 1 ≤ ` ≤ d − 1 is integer and
ε > 0. There exists an algorithm that runs in time (1/ε)O(n`) and produces a list of all
p ∈ RM(n, d) such that dist(p,R) ≤ α.

The proofs of all the above theorems can be found in the full paper, which is provided in
Chapter 11.

2.3.2 Holes in Reed-Muller codes

In this work we study the possible weights of codewords of Generalized Reed–Muller codes.
For a prime power q, let Fq denote the field of q elements. The rth-order Generalized Reed–
Muller code over Fq, denoted by RMq(r,m), is a linear code over Fq, whose codewords
f ∈ RMq(r,m) : Fmq → Fq are evaluations of polynomials over Fq in m variables of total
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degree at most r. Reed–Muller codes correspond to the special case of q = 2. Both Reed–
Muller codes and the more general family of Generalized Reed–Muller codes have attracted
research for many years; to quote [MS83],

Reed–Muller (or RM) codes are one of the oldest and best understood families of codes.
In this work we study Generalized Reed–Muller codes RMq(r,m), when the field Fq and

order r are fixed, and the number of variables m tends to infinity. The basic property that
we study is the relative weights of codewords f ∈ RMq(r,m).

Definition (Relative weight). The relative weight of a codeword f ∈ RMq(r,m) is the
fraction of non-zero elements,

wt(f) =
1

qm
|{x ∈ Fmq : f(x) 6= 0}|.

We denote by Aq(r,m) the set of all weights of codewords f ∈ RMq(r,m),

Aq(r,m) = {wt(f) : f ∈ RMq(r,m)}.

There are two simple constraints on the values in Aq(r,m). The first constraint relates
to the the fact that the code is finite - since a relative weight is the fraction of inputs x for
which f(x) 6= 0, all values in Aq(r,m) are rational of the form `

qm
. The second one relates

to the minimal distance of the code.

Definition (Minimal distance). The minimal relative distance of a code C is the minimal
weight of a non-zero codeword f ∈ C.

The minimal distance of Generalized Reed–Muller codes is well-known (see for example
[MS83]).

Fact. Let r = (q− 1)a+ b where 0 ≤ b ≤ q− 1. The minimal relative distance of RMq(r,m)
is

δq(r) =
1

qa

(
1− b

q

)
.

We are interested in the set of possible weights of Aq(r,m) for fixed q and r when m→∞.
Clearly Aq(r,m) ⊂ Aq(r,m

′) when m < m′. Thus it makes sense to look at the limit

Aq(r) =
∞⋃
m=1

Aq(r,m).

Our main object of study is the set Aq(r). A priory, one would think that the set Aq(r) is
dense inside the permissible range, given by the minimal distance of the code. However, our
main result shows that the truth is quite far from this. First we define q-rational numbers.

Definition (q-rational numbers). A rational number α ∈ [0, 1] is q-rational if it is of the
form α = `

qk
for some integers `, k.

Note that if q = pt for a prime p, then q-rational numbers and p-rational numbers define
the same set.
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Theorem (Main theorem). Let α ∈ [0, 1] be a number which is not q-rational. Then there
exists some ε > 0 such that Aq(r) contains no value in the range (α− ε, α+ ε). Equivalently,
there is no sequence of polynomials f1, f2, . . . over Fq of degree at most r, each possibly on a
different number of variables, such that limk→∞wt(fk) = α.

For example, there is no sequence of polynomials f1, f2, . . . over F3 of total degree at
most 17, such that limk→∞wt(fk) = 1

2
. The following is an immediate corollary of our main

theorem.

Corollary. Let C denote the closure of C ⊂ [0, 1]. We have

∞⋃
r=1

Aq(r) = {the set of q-rationals}

The proofs of all the above results can be found in the full paper, which is given in
Chapter 12.

2.3.3 Testing of exponentially large codes, by a new extension to
Weil bound for character sums

We study in this work families of locally testable codes. Let FN = Fpn be a finite field, where
we think of p as either constant or small. A code is a family of functions C = {f : Fpn → Fp}.
All codes we consider in this work are linear. The dimension of a code is dim(C) = logp(|C|).

A code is locally testable if there is a randomized algorithm, which when given as input
a function f : Fpn → Fp, probes f in a small number of locations and determines (with high
probability) whether f ∈ C or f is far1 from all codewords of C. A code is q-locally testable
if the number of probes is at most q, where q is sublinear in the code length, i.e. q = o(N).

Most of the study of locally testable codes has been focused on codes testable with
constant query complexity (i.e. q = O(1)) or with poly-logarithmic query complexity (i.e.
q = (logN)O(1)). They appear as low-degree tests in the IP = PSPACE, MIP = NEXP
and PCP = NP theorems, and indeed the work of [GS06] (which was later partly deran-
domized by [BSSVW03]) elucidates their role as the “combinatorial heart” of PCPs.

In general, there is a tradeoff between the rate of the code dim(C)/N and the query
complexity of testing this code. A major open problem in this field is whether one can enjoy
the best of both worlds: a code of constant rate which is locally testable with a constant
query complexity.

One line of research focuses on constructing explicit codes which try to approach this
optimal tradeoff. The best results to date are by Ben-Sasson and Sudan [BSS05] and
Dinur [Din07] (see also Meir [Mei08]) which achieve an explicit binary code of rate 1

(logN)O(1)

which is testable using a constant number of probes.
A second line of research focuses on characterization of general families of codes that are

locally testable [BLR93, RS93, NAR03, JPRZ04, KR04, KS08, KS07, KL05, GKS09, KS10].
Many results in this field apply only to sparse codes over binary fields F2n , which are codes

1If f has distance ε from C, i.e. if ming∈C Prx∈Fpn
[f(x) 6= g(x)] = ε, we require the local test to reject f

with probability at least Ω(ε).
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of dimension O(logN) [KL05, KS07, GKS09, KS10]. Another example is Generalized Reed-
Muller codes which are the family of polynomials f : Fpn → Fp of total degree at most d.

These codes are testable using p
d
p−1 = exp(d) queries, while having dimension O(nd) [NAR03,

JPRZ04, KR04]. Such codes can be locally testable with sublinear number of queries for
d ≤ O(log n), which gives codes of quasi-logarithmic dimension dim(C) ≤ (logN)log logN .

Our work falls into the latter line of research. We exhibit a general family of codes of
almost optimal dimension dim(C) = NΩ(1) which are locally testable with sublinear query
complexity. We achieve this by studying affine invariant codes. A code C = {f : Fpn → Fp}
is affine invariant if it is invariant under affine transformation of the coordinates of input
space. That is, if f(x) ∈ C then also g(x) = f(ax+ b) ∈ C for any a, b ∈ Fpn , a 6= 0. Previous
results [GKS09] showed that sparse affine invariant codes (i.e., codes of size pO(n)) are locally
testable. We significantly extend this to codes of up to exponential size, i.e. of size at most
pp

Ω(n)
.

Theorem (Main result). Let C = {f : Fpn → Fp} be a linear code which is affine invariant
of dimension dim(C) ≤ pαn, where α > 0 is an absolute constant. Then C is locally testable
with query complexity q = poly(dim(C)/n) = o(pn). In particular, any sparse affine invariant
code (i.e. with dim(C) = O(n)) is locally testable with constant query complexity q = O(1).
The parameter α can be chosen to be any α < 1/32 for large enough n.

The proof of the theorem can be found in the full paper, which is given in Chapter 13.
This generalizes previous works in several aspects: our result applies to codes of expo-

nential size exp(Nα), while previous results apply only to codes of polynomial size NO(1)

or quasi-polynomial size exp(logN log logN). Previous results on sparse codes applied only
to binary fields F2n , while our result applies to any field of small characteristic. Note that
a recent result of Ben-Sasson and Sudan [BSS09, Sud10] shows that affine invariant codes
that are testable with constant number of queries can not have exponential rate. Thus,
our testing result of exponentially large codes can not be improved to testing with constant
locality.

The main new ingredients in our work is a Fourier-analytic approach for estimating
the weight distribution of affine invariant codes, and a new extension of the Weil bound
for character sums of low-degree polynomials. We start by describing our new result for
character sums for polynomials, and then discuss its relation to proving local testability
of affine invariant codes. The proof of our new extension for the Weil bound relies on
techniques borrowed from additive combinatorics. This demonstrates yet another connection
between additive combinatorics and theoretical computer science. Such connections were
used before to establish results regarding pseudorandom generators [BV07, Lov08, Vio08]
and list-decoding of codes [KLP10].

2.4 Property testing for polynomials

Property testing is a field which studies when can properties of ”large” objects can be
revealed just by looking on small fractions of these objects. Natural objects studied in this
framework are functions, graphs and hypergraphs. In general, a property is locally testable
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is one can distinguish between objects having this property and objects which are ”far” from
having this property. In our setting, we consider the problem of property of locally testing for
polynomials. That is, given a function f : Fnp → Fp, we wish to decide (while querying f only
on a small number of evaluations) whether f is a low-degree polynomial, or is far from being
a low-degree polynomials (in the sense that many evaluations of f must be changed in order
to make f a low-degree polynomial). That is, we wish to query f only in a few locations, and
still be able to distinguish degree-d polynomials from functions which are far from degree-d
polynomials. Such questions, beside being natural in the setting of property testing, also
arise in the area of PCP (Probabilistically Checkable Proofs) constructions, where they are
known as ”low degree tests”, and they form the heart of many PCP constructions.

Being a low-degree polynomial, although being a global property of a function, can be
verified locally. A function is a degree-d polynomial iff taking any d + 1 derivatives of it
makes the function vanish. This is true in the analytical setting, and also for polynomials
over finite fields, where we use discrete directional derivatives.

The derivative of f(x) in direction y ∈ Fnp is defined as fy(x) = f(x+y)−f(x). It is easy
to see that if f is a degree-d polynomial, then for any y, fy(x) is a polynomial in x of degree
at most d−1. Define fy1,...,yk to be the iterative derivative of f in directions y1, . . . , yk. Then
it is clear by the above argument, that if f is a degree-d polynomial, then fy1,...,yd+1

≡ 0
for any set of directions y1, . . . , yd+1. In fact, the reverse implication is also true: if for any
y1, . . . , yd+1 we have that fy1,...,yd+1

≡ 0, then f must be a degree-d polynomial.
This raises a very natural test. To test if a function is close to degree-d polynomials,

compute a random d + 1 iterated derivative of it, and accept the function if the derivative
is zero. We refer to this test as the derivatives test. Our previous discussion is equivalent to
the statement: f is a degree-d polynomial iff the derivatives test always accept f . Alon et
al. [AGHP90] showed that a robust version of this statement also holds - if f is accepted by
the derivatives test with probability at least 1− ε (where ε is small enough as a function of
p and d), then the function has distance O(ε) to a unique degree-d polynomial (and in fact
the function f can be decoded to this polynomial).

2.4.1 The Gowers norm

Very similar ideas, in a different context, were also studied by Gowers [Gow01] in his seminal
work on the new proof for Szemerdi’s theorem. He defined the (now known as) Gowers norm
of a function, which is related to the acceptance probability of the derivatives test. Let

ωp = e
2πi
p be a p root of unity. The d-Gowers norm of f : Fnp → Fp is defined as:

‖f‖Ud =
(
Ex,y1,...,yd∈Fnp [ω

fy1,...,yd (x)
p ]

)1/2d

Gowers has proved that ‖ · ‖Ud is indeed a norm. This proves that if a function f is
somewhat close to a degree-(d − 1) polynomial, then the Gowers norm, or equivalently the
derivatives test, accepts f with noticeable probability over a random function. It turns out
that instead of studying distance of functions, it it more analytically convenient to study
their correlation. The correlation of two functions f, g : Fnp → Fp is defined as

correl(f, g) = Ex∈Fnp [ωf(x)−g(x)
p ]
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Correlation and distance are equivalent up to a constant - two functions have distance (1−
1
p
)− ε, iff for some c ∈ Fp \ {0}, correl(cf, cg) ≥ Θ(ε).

In this language, Gowers showed that if f has correlation ε with some degree-(d − 1)
polynomial, then ‖f‖Ud ≥ ε (equivalently, the d-derivatives test accepts f with probability
at least 1

p
+ Θ(ε2

d
)). This is in contrast to a random function, which is inherently far from

all degree-d polynomials, for which the Gowers norm is o(1), and the acceptance probability
of the derivatives test is 1

p
+ o(1).

Thus, a natural question is whether the opposite direction is true as well: If we know that
‖f‖Ud ≥ ε, does this tells us that f has ε′ correlation with some degree-(d− 1) polynomial?
This was conjectured to be true, and came to be known as the Inverse Conjecture for the
Gowers norm (abbreviated ICGN).

Although the ICGN has application in Computer Science, as a possible candidate for
testing correlation with low-degree polynomials, its main use is in the area of Additive
Combinatorics, where this is the major tool allowing one to study linear progressions (and
in general linear structures) in arbitrary sets. For example, it allowed Gowers [Gow01] to
prove that sets with positive density in the integers must contain arithmetic progressions of
any length.

For correlation with linear polynomials, i.e. ‖ · ‖U2 , the ICGN is true, by the linearity
testing result of Blum et al. [BLR93] and Bellare et al. [BCH+95]. In this case we get
ε′ = poly(ε). For correlation with quadratic polynomials, i.e. ‖ · ‖U3 , the ICGN is also true.
This is by results of Green and Tao [GT08] and Samorodnitsky [Sam07]. The proof for this
case is more involved, and the ε′ obtained is weaker: ε′ = exp(−1/ε).

However, it turns out the ICGN is false for ‖ · ‖U4 . This was obtained by Green and
Tao [GT07] and independently by myself, Meshulam and Samorodnitsky [LMS08]. There is
a simple example of a degree-4 polynomial, whose 4-Gowers norm is high (so if the ICGN
was true, we would expect it to be close to cubic polynomials), but this polynomial has
correlation at most exp(−n) with all cubic polynomials. For more details we refer to the full
paper which is given in Chapter 14.

A new version of the conjecture was recently proved by Bergelson et al. [BTZ09]. This
new conjecture states that functions with noticeable d-Gowers norm is correlated to non-
classical polynomials of degree d−1. A non-classical polynomial of degree d−1 is a function
g : Fnp → Zpk , such that gy1,...,yd ≡ 0 for all directions (notice that in gy(x) = g(x+ y)− g(x),
the sum inside the brackets is taken in Fp, while the difference outside is taken in Zpk). This
generalizes the definition of polynomials (which match the k = 1 case), and it turns out that
there exist non-classical polynomials which are not polynomials. Bergelson et al. prove that
if ‖f‖Ud ≥ ε, then f has correlation ε′ with some non-classical polynomial g. The definition
of correlation is generalized in the natural way to non-classical polynomials: for f : Fnp → Fp
and g : Fnp → Zpk ,

correl(f, g) = Ex∈Fnp [ωf(x)
p · ω−g(x)

pk
]

The caveat of the Bergelson et al. argument is that it is purely existential - for every
constant ε there exists some constant ε′, where they cannot determine an exact relation. This
is because their proof is based on Ergodic Theory, which has strong tools to prove qualitative
results, such as the one describe above, but is not equipped as such to give quantitative result.
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2.4.2 Lower bounds for linearity testing

The simplest version of property testing for polynomials is testing whether a function is
close to a linear function or not. This corresponds to the case of degree 1 polynomials. We
study in this section general tests for linearity, which extend the basic derivatives test. The
main question is what is the relation between the number of queries the test makes and the
properties of the test.

We study the relation between the number of queries and soundness of adaptive linearity
tests. A linearity test (over the field F2 for example) is a randomized algorithm which has
oracle access to the truth table of a function f : Fn2 → F2, and needs to distinguish between
the following two extreme cases:

1. f is linear

2. f is far from linear functions

A function f is called linear if it can be written as f(x1, ..., xn) = a1x1 + ...+ anxn, with
a1, ..., an ∈ F2. The correlation of two functions f, g : Fn2 → F2 is defined as correl(f, g) =
|Px[f(x) = g(x)]− Px[f(x) 6= g(x)]|. f is far from linear functions if it has small correlation
with all linear functions.

Linearity tests were first introduced by Blum, Luby and Rubenfeld in [BLR93]. They
presented the following test (coined the BLR test), which makes only 3 queries to f :

1. Choose x,y ∈ {0, 1}n at random

2. Verify that f(x + y) = f(x) + f(y).

Bellare et al. [BCH+95] gave a tight analysis of the BLR test. It is obvious that the BLR
test always accepts a linear function. They have shown that if the test accepts a function f
with probability 1/2 + ε, then f has correlation at least 2ε with some linear function.

For a linearity test, we define that it has completeness c if it accepts any linear function
with probability of at least c. A test has perfect completeness if c = 1. A linearity test has
soundness s if it accepts any function f with correlation at most ε with all linear functions,
with probability of at most s+ ε′, where ε′ → 0 when ε→ 0. We define the query complexity
q of a test as the maximal number of queries it performs. In the case of the BLR test, it has
perfect completeness, soundness s = 1/2 (with ε′ = 2ε) and query complexity q = 3.

If one repeats a linearity test with query complexity q and soundness s independently t
times, the query complexity grows to q′ = qt while the soundness reduces to s′ = st. So,
it makes sense to define the amortized query complexity q̄ of a test as q̄ = q/ log2 (1/s).
Independent repetition of a test doesn’t change it’s amortized query complexity. Notice that
the BLR test has amortized query complexity q̄ = 3.

Linearity tests are a key ingredient in the PCP theorem, started in the works of Arora
and Safra [AS98] and Arora, Lund, Motwani, Sudan and Szegedy [ALM+98]. In order to
improve PCP constructions, linearity tests were studied in order to improve their amortized
query complexity.

Samorodnitsky and Trevisan [ST00] have generalized the basic BLR linearity test. They
introduced the Complete Graph Test. The Complete Graph Test (on k vertices) is:
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1. Choose x1, ...,xk ∈ {0, 1}n independently

2. Verify f(xi + xj) = f(xi) + f(xj) for all i, j

This test has perfect completeness and query complexity q =
(
k
2

)
+ k. They show that all

the
(
k
2

)
tests that the Complete Graph Test performs are essentially independent, i.e. that

the test has soundness s = 2−(k2). This makes this test have amortized query complexity
q̄ = 1 + θ(1/

√
q). They show that this test is optimal among the family of Hyper-Graph

Tests (see [ST00] for definition of this family of linearity tests), and raise the question of
whether the Complete Graph Test is optimal among all linearity tests, i.e. does a test with
the same query complexity but with better soundness exist?

They partially answer this question in [ST06], where (among many other results) they
show that no non-adaptive linearity test can perform better than the Complete Graph Test.
A test is called non-adaptive if it first chooses q locations in the truth table of f , then queries
them, and based on the results accept or rejects f . Otherwise, a test is called adaptive. An
adaptive test may decide on its query locations based on the values of f in previous queries.

The proof technique of [ST06] uses the algebraic analysis of the Gowers Norm of certain
functions. The Gowers Norm is a measure of local closeness of a function to a low degree
polynomial. For more details regarding the definition and properties of the Gowers Norm,
see [GT08] and [Sam07].

Ben-Sasson, Harsha and Raskhodnikova prove in [BSHR05] that any adaptive linearity
test with completeness c, soundness s and query complexity q can be transformed into a non-
adaptive linearity test with the same query complexity, perfect completeness and soundness
s′ = s+ 1− c. Combining their result with the result of [ST06] proves the lower bound also
for adaptive linearity tests.

We also prove the same optimal lower bound for adaptive linearity test, but our proof
technique is arguably simpler and more direct than the one used in [ST06]. We also study,
like [ST06], the behavior of linearity tests on quadratic functions. However, instead of em-
ploying algebraic analysis of the Gowers Norm of certain functions, we provide a more direct
combinatorial proof, studying the behavior of linearity tests on random quadratic functions.
This proof technique also lets us prove directly the lower bound also for adaptive linearity
tests. The result is given in details in the full paper, which can be found in Chapter 15.
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Chapter 3

Open problems

Our work sheds some light on the properties of polynomials in various aspects: considered as
a computational model, in coding theory and the structure for functions which are close to
polynomials. Still, many important questions remain unsolved, most of them are currently
far beyond the power of current techniques. We will explore various open problems which
arise in these contexts, some of which may be more approachable than others.

3.1 Structure of biased polynomials

To better understand low-degree polynomials, it is interesting to understand how generic (i.e
”random”) polynomials behave. In particular, it would be interesting to find some distinction
between random and non-random polynomials. We would like to have a separation of the
form: either a polynomial ”appears random”, or it has some specific structure (and thus is
non-random).

A natural measure for randomness of a polynomial f(x) : Fnp → Fp, is its distribution,
i.e. the number of elements mapped to each image,

|{x : f(x) = a}|, a ∈ Fp

It is easy to see that most polynomials give rise to a uniform map: they map around 1/p
of the elements to each a ∈ Fp. A polynomial which fails to do so, is inherently not random.
We would like to show that such polynomial must be highly structured. If we could show
this, then any polynomial is either ”random” (in the sense its image is close to uniform), or
structured.

Moreover, if one succeeds to establish such a dichotomy, than in fact any polynomial f
which can be approximated by a lower degree polynomial g, can in fact be represented as
the sum of a lower degree polynomial, and a ”structured” polynomial f − g (this holds as
the distribution of the difference f − g must be non-uniform if g approximates f).

In the joint work with Tali Kaufman [KL08] we showed that qualitatively this is indeed
the case. We show that if for a degree-d polynomial f(x), the distribution {f(x) : x ∈ Fnp}
has distance at least ε from the uniform distribution (where distance is taken for example in
statistical distance), then in fact there exist c = c(ε) degree-(d− 1) polynomials g1, . . . , gc :
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Fnp → Fp, and a combiner function F : Fcp → Fp, such that:

f(x) = F (g1(x), . . . , gc(x))

This generalizes a previous work of Green and Tao [GT07], which was restricted to degrees
bounded the field characteristic.

The value of c we (and also Green and Tao) obtain, increases rapidly with d. Its growth
resembles that of the Ackerman function, iterated d times. In a subsequent work, Haramaty
and Shpilka [HS10] showed this number can be reduced to log 1/ε for d = 3 and poly(1/ε)
for d = 4.

However, we have no example in which the number of lower degree polynomials required
exceeds O(log 1/ε). This raises the following natural question, which relates to the struc-
ture of polynomials which on one hand behave ”non-random”, but has no simple structural
explanation for this.

Problem 3.1. Fix a field Fp and a degree d. Is it true there exists a constant C = C(p, d)
such that the following holds: Every degree-d polynomial f : Fnp → Fp, whose distribution has
distance of at least ε from the uniform distribution over Fp, can be decomposed as a function
of at most C · log 1/ε polynomials of degree at most d− 1.

Answering this problem in either direction will improve dramatically our understanding
of the relation between approximation and structure of low-degree polynomials.

3.2 Explicit functions which cannot be approximated

by polynomials

One of the more intriguing questions is which functions cannot be computed or approximated
by low-degree polynomials. Finding functions which cannot be approximated by low-degree
polynomials f : Fnp → Fp, even of moderately large degree d = logO(1) n, have far reaching
applications in complexity, as they are related to bounding the power of modular counting
with regards to other basic computational operations.

Consider for simplicity the case of polynomials and functions over F2. The correlation of
two functions f, g : Fn2 → F2 is defined as

correl(f, g) = Pr[f = g]− Pr[f 6= g]

, and the correlation of f with degree d polynomials is the maximal correlation of f with
any degree d polynomial g. Approximation of functions by low degree polynomials is one
of the main tools used in proving lower bounds for constant depth circuits. For example,
Razborov and Smolensky [Raz87, Smo87] provided an explicit function Mod3 that cannot
be computed by a constant depth circuit with a subexponential number of And, Or and
Xor gates. The proof combines two arguments:

1. Any constant depth circuit of subexponential size has a very high correlation (that
is, 1− o (1)) with some polynomial of degree nε;
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2. Such a low degree polynomial has a correlation of at most 2/3 with Mod3. (In fact,
this is true for any polynomial of degree at most ε

√
n for some constant ε.)

The best known constructions of explicit functions that cannot be approximated by low
degree polynomials (see, e. g., [BSK08, BNS, Raz87, Smo87, VW08]) fall into two categories:

• For large degree bounds (d < nΩ(1)), there exists a symmetric function with a correla-
tion of at most O (1/

√
n) with degree O (

√
n) polynomials;

• For small degree bounds (d < log n) there are explicit functions having a correlation
of at most exp(−n/cd) with degree d polynomials for some constants c (best known
is c = 2.)

Certain applications, e. g., pseudorandom generator constructions via the Nisan–Wigderson
construction [NW94], require a function having an exponentially small correlation with low
degree polynomials. This is only known for degrees up to log n, while for larger degrees the
best known bound is polynomial in n. Finding explicit functions with a better correlation
is an ongoing quest with limited success. The above discussion raises the following natural
problem:

Problem 3.2. Find an explicit function f : Fn2 → F2, whose correlation with polynomials of
degree logO(1)(n) is exponentially small.

In fact, this problem is unsolved even if one restricts itself to correlation below n−1/2.
For more details, see a survey by Viola [Vio09]. In the joint work with Ido Ben-Eliezer and
Rani Hod [BEHL09] we showed that such a function f can have degree logO(1)(n). It is not
clear though how to find this polynomial explicitly.

Problem 3.3. Construct using little randomness a degree-(d+1) polynomial, which also has
low correlation with all degree-d polynomials.

3.3 Pseudorandom generators for polynomials

We are interested in explicitly constructing pseudorandom generators (PRG) against low
degree polynomials over finite fields. A PRG for degree-d polynomials is a function G :
{0, 1}r → Fnp , such that for every degree-d polynomial f(x1, . . . , xn), the distribution of the
outcome of f when applied to a uniform output of G is close to the distribution of the
outcome of f when applied to a uniform element in Fnp . We are interested in PRG that are
pseudorandom against all degree-d polynomials, and use as few random bits as possible.

The case of pseudorandom generators against linear polynomials, commonly referred to
as small-bias generators, was first studied (over F = F2) by Naor and Naor [?] and later
by Alon et al. [AGHP90]. Them and others gave explicit constructions, which were later
generalized for any finite field. These constructions have seed length which is up to a constant
optimal. The construction of small-bias generators was a major tool in derandomization,
PCPs constructions and lower bounds. See [BSSVW03] and the references within for more
details regarding small-biased generators.
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The generalization of the problem for constant degree polynomials was first studied by
Luby, Veličković, and Wigderson [LVW93]. Their construction required exp(O(

√
log n/ε))

random bits for constant degree.
In large fields, a relatively good solution was given by Bogdanov[Bog05]. His PRG fooling

degree-d polynomials has seed length polynomially close to the optimal, but works only if
the field size is at least polynomial in the degree and log the number of variables. His
construction is based on techniques in Algebraic Geometry.

In small fields (which is the important case for circuit complexity, and also the harder
case), a sequence of works by Bogdanov and Viola [BV07], myself [Lov08] and Viola [Vio08]
proved that the following is a PRG for degree d polynomials with error ε: the sum of d
independent small-bias generators with error εexp(d). This gives a generator which requires
exp(d) log n/ε random bits in order to fool degree d polynomials. This is no better than
trivially picking n elements which d > Ω(n). On the other hand, by the probabilistic
method, there exists a non-explicit PRG for degree-d polynomials required only O(d log n/ε)
bits. This raises the following research question:

Problem 3.4. Find a PRG for degree-d polynomials over small fields, for d = Ω(log n),
which has non-trivial seed length (i.e. less randomness than just choosing a random input in
Fnp).

The model of degree-d polynomials makes sense from the point of view of circuit com-
plexity when d < O(log n), since such polynomials can be computed with polynomial size
circuits (that is, they are the sum of a polynomial number of monomials). However, when
the degree exceeds Ω(log n) this is no longer true. Thus, it makes sense to study also the
family of sparse polynomials, which are polynomials with at most a polynomial number of
monomials. Note that contrary to the consideration of degree, the notion of sparsity is not
invariant under a linear transformation of the input elements, and thus sparsity seems to be
more related to the notion of succinctness of the representation of a function. For this rea-
son, establishing results for such polynomials will be a major breakthrough. The following
problem captures the essence of the problem.

Problem 3.5. Find an efficient PRG for polynomials f : Fn2 → F2 of degree Ω(log n) but
with only a polynomial number of monomials.

3.4 List decoding size for Generalized Reed-Muller

codes

The Generalized Reed-Muller code RMp(n, d) encodes a degree-d polynomial f : Fnp → Fp
by the list of its evaluations

(
f(x) : x ∈ Fnp

)
. When p = 2, the codes are simply called

Reed-Muller codes.
The most basic property of a codeword is its weight, defined as the number of non-zero

elements in it. Understanding the weights of codewords turns to be important in analyzing
the decoding properties of linear codes.

There are several properties of the weights of codewords which are commonly studied:
the minimal weight of the code (the minimal weight of a non-zero codeword), the weight
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distribution of the code (the weight of a uniformly chosen codeword), and divisibility prop-
erties (do all weights divide by some factor). Another notion, used mainly in Theoretical
Computer Science, is that of list decoding (what is the maximal number of codewords in a
ball or prescribed radius).

The properties Generalized Reed-Muller code, although being a relatively simple to define
code, are not at all well understood. The minimal distance of Generalized Reed-Muller codes
are known. However, the weight distribution is fully characterized only for d = 1 and d = 2.

For Reed-Muller codes (i.e. for p = 2), Azumi et al. [AKT76] classified the codewords of
weight at most 2.5 times the minimal distance. The first result on the weight distribution for
general distances was obtained in a joint work with Tali Kaufman and Ely Porat [KLP10],
where we give nearly tight results for the weight distribution of Reed-Muller codes which
apply for all distances.

List-decoding of Reed-Muller codes were studied by Gopalan et al. [GKZ08], who gave
bounds on the list-decoding size when the radius is below the minimal distance of the code,
and also efficient algorithms to find the codewords in this case. In the case of larger radii,
they gave a reduction, showing that if one can give a bound on the list-decoding size, then
an efficient algorithm to find the codewords can be obtained. In the joint work with Tali
Kaufman and Ely Porat [KLP10] we also give nearly tight bounds for the list-decoding size
of Reed-Muller codes, which apply to all radii.

The problem of list-decoding Generalized Reed-Muller codes is still open. In particular,
it is conjectured that in balls of radius below the minimal distance of the code, the number
of codewords is constant (i.e. independent of the number of variables). This was proved by
Gopalan et al. [GKZ08] when p− 1|d, and by Gopalan [Gop09] for d = 2.

Problem 3.6. Let ρ be the minimal distance of RMp(n, d). Show the list-decoding size of
RMp(n, d) in radius ρ − ε is constant (i.e. depends only on p, d, ε, and is independent of
n). That is, for every function g : Fnp → Fp the number of degree d polynomials f for which
Pr[f 6= g] ≤ ρ− ε is bounded by a constant independent of n.

3.5 The inverse conjecture for the Gowers norm

Let f : Fnp → Fp be some function. We wish to know if f is close to a low-degree polynomial
(where the distance between two functions is defined to be the fraction of inputs on which
they differ). The goal is to decide this efficiently, without querying all the values of f , and
still be able to get the correct answer with good probability. That is, we wish to query f
only in a few locations, and still be able to distinguish functions somewhat close to degree-d
polynomials, from functions which are not.

Such questions are natural in the area of property testing, where the general problems
studied are deciding if an object has some global structure (as being close to a low-degree
polynomial) by local views of the object (viewing only a few points of the function in our
case). Testing if a function is close to low-degree polynomials is also important in many
PCP constructions (although there the field is commonly chosen to be large).

Being a low-degree polynomial, although being a global property, can be verified locally.
A function is a degree-d polynomial iff taking any d+ 1 derivatives of it makes the function
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vanish. This is true in the analytical setting, and also for polynomials over finite fields,
where we use discrete directional derivatives.

The derivative of f(x) in direction y ∈ Fnp is defined as fy(x) = f(x + y) − f(x). It is
easy to see that if f is a degree-d polynomial, then for any y, fy is a polynomial of degree at
most d − 1. Define fy1,...,yk to be the iterative derivative of f in directions y1, . . . , yk. Then
it is clear by the above argument, that if f is a degree-d polynomial, then fy1,...,yd+1

≡ 0
for any set of directions y1, . . . , yd+1. In fact, the reverse implication is also true: if for any
y1, . . . , yd+1 we have that fy1,...,yd+1

≡ 0, then f must be a degree-d polynomial.
This raises a very natural test. To test if a function is close to degree-d polynomials,

compute a random d + 1 iterated derivative of it, and accept the function if the derivative
is zero. We refer to this test as the derivatives test. Our previous discussion is equivalent to
the statement: f is a degree-d polynomial iff the derivatives test always accept f . Alon et.
al [AGHP90] showed that a robust version of this statement also holds - if f is accepted by
the derivatives test with probability at least 1− ε (where ε < εmax(F, d)), then the function
has distance O(ε) to a unique degree-d polynomial (and in fact the function f can be decoded
to this polynomial).

Very similar ideas, in a different context, were also studied by Gowers [Gow01] in his
seminal work on the new proof for Szemerdi’s theorem. He defined the (now known as)
Gowers norm of a function, which is related to the acceptance probability of the derivatives

test. Let ωp = e
2πi
p be a p root of unity. The d-Gowers norm of f : Fnp → Fp is defined as:

‖f‖Ud =
(
Ex,y1,...,yd∈Fnp [ω

fy1,...,yd (x)
p ]

)1/2d

Gowers has proved that ‖ · ‖Ud is indeed a norm. This proves that if a function f is
somewhat close to a degree-(d− 1) polynomial , then the Gowers norm, or equivalently the
derivatives test, accepts f with noticeable probability over a random function. It turns out
that instead of studying distance of functions, it it more analytically convenient to study
their correlation. The correlation of two functions f, g : Fnp → Fp is defined as

correl(f, g) = Ex∈Fnp [ωf(x)−g(x)
p ]

Correlation and distance are equivalent up to a constant - two functions have distance (1−
1
p
)− ε, iff for some c ∈ Fp \ {0}, correl(cf, cg) ≥ Θ(ε).

In this language, Gowers showed that if f has correlation ε with some degree-(d − 1)
polynomial, then ‖f‖Ud ≥ ε (equivalently, the d-derivatives test accepts f with probability
at least 1

p
+ Θ(ε2

d
)). This is in contrast to a random function, which is inherently far from

all degree-d polynomials, for which the Gowers norm is o(1), and the acceptance probability
of the derivatives test is 1

p
+ o(1).

Thus, a natural question is whether the opposite direction is true as well: If we know that
‖f‖Ud ≥ ε, does this tells us that f has ε′ correlation with some degree-(d− 1) polynomial?
This was conjectured to be true, and came to be known as the Inverse Conjecture for the
Gowers norm (abbreviated ICGN).

Although the ICGN has application in Computer Science, as a possible candidate for
testing correlation with low-degree polynomials, its main use is in the area of Additive
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Combinatorics, where this is the major tool allowing one to study linear progressions (and
in general linear structures) in arbitrary sets. For example, it allowed Gowers [Gow01] to
prove that sets with positive density in the integers must contain arithmetic progressions of
any length.

For correlation with linear polynomials, i.e. ‖ · ‖U2 , the ICGN is true, by the linearity
testing result of Blum et. al [BLR93] and Bellare et. al [BCH+95]. In this case we get
ε′ = poly(ε). For correlation with quadratic polynomials, i.e. ‖ · ‖U3 , the ICGN is also true.
This is by results of Green and Tao [GT08] and Samorodnitsky [Sam07]. The proof for this
case is more involved, and the ε′ obtained is weaker: ε′ = exp(−1/ε).

However, it turns out the ICGN is false for ‖ · ‖U4 . This was obtained by Green and
Tao [GT07] and independently by myself, Meshulam and Samorodnitsky [LMS08]. There is
a simple example of a degree-4 polynomial, whose 4-Gowers norm is high (so if the ICGN
was true, we would expect it to be close to cubic polynomials), but this polynomial has
correlation at most exp(−n) with all cubic polynomials.

A new version of the conjecture was recently proved by Bergelson et. al [BTZ09]. This
new conjecture states that functions with noticeable d-Gowers norm is correlated to non-
classical polynomials of degree d−1. A non-classical polynomial of degree d−1 is a function
g : Fnp → Zpk , such that gy1,...,yd ≡ 0 for all directions (notice that in gy(x) = g(x+ y)− g(x),
the sum inside the brackets is taken in Fp, while the difference outside is taken in Zpk). This
generalizes the definition of polynomials (which match the k = 1 case), and it turns out that
there exist non-classical polynomials which are not polynomials. Bergelson et. al prove that
if ‖f‖Ud ≥ ε, then f has correlation ε′ with some non-classical polynomial g. The definition
of correlation is generalized in the natural way to non-classical polynomials: for f : Fnp → Fp
and g : Fnp → Zpk ,

correl(f, g) = Ex∈Fnp [ωf(x)
p · ω−g(x)

pk
]

The caveat of the Bergelson et. al argument is that it is purely existential - for every
constant ε there exists some constant ε′, where they cannot determine an exact relation. This
is because their proof is based on Ergodic Theory, which has strong tools to prove qualitative
results, such as the one describe above, but is not equipped as such to give quantitative result.
This raises several research questions.

Problem 3.7. Find a proof for the revised ICGN, which does not rely on Ergodic Theory.
In particular, find some quantitative connection between ε′ and ε.

A first step in this direction, which may be easier, is

Problem 3.8. Find a quantitative proof for the revised ICGN, where the function f itself is
constrained to be a low-degree polynomial.

Bergelson et. al result in fact tells us that the natural derivatives test is not a good test
for testing if a function is mildly close to low-degree polynomials over finite fields, because
it tests instead if a function is close to a low-degree non-classical polynomials. The first case
where this difference emerges is when testing if a function over F2 is mildly close to cubic
polynomials. Let f : Fn2 → F2 be a function. We wish to test if f is 1

2
− ε close to cubic

polynomials, while querying f in a small number of place.
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Problem 3.9. Let ε1 > ε2 > 0 be arbitrary. Does there exist a test, querying f at a constant
number of indices (which may depend on ε1, ε2), which can differentiate function at least
1
2
− ε1 close to cubic polynomials, from functions at most 1

2
− ε2 close to cubic polynomials?

Note the for linear and quadratic polynomials, the derivatives test uses a constant number
of queries, independent of ε1, ε2.
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Part II

Polynomials as a computational model
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Chapter 4

Worst case to average case reductions
for polynomials

A degree-d polynomial p in n variables over a field F is equidistributed if it takes on each
of its |F| values close to equally often, and biased otherwise. We say that p has low rank
if it can be expressed as a function of a small number of lower degree polynomials. Green
and Tao [GT07] have shown that over large fields (i.e when d < |F|) a biased polynomial
must have low rank. They have also conjectured that bias implies low rank over general
fields, but their proof technique fails to show that. In this work we affirmatively answer
their conjecture. Using this result we obtain a general worst case to average case reductions
for polynomials. That is, we show that a polynomial that can be approximated by a few
polynomials of bounded degree (i.e. a polynomial with non negligible correlation with
a function of few bounded degree polynomials), can be computed by a few polynomials
of bounded degree. We derive some relations between our results to the construction
of pseudorandom generators. Our work provides another evidence to the structure vs.
randomness dichotomy.

Joint work with Tali Kaufman.

4.1 Introduction

Let F be a prime finite field. Let p : Fn → F be a polynomial in n variables over F of
degree at most d. We say that p is equidistributed if it takes on each of its |F| values close
to equally often, and biased otherwise. We say that p has a low rank if it can be expressed
as a bounded combination of polynomials of lower degree, and high rank otherwise. More
formally we consider the following definitions.

Definition 4.1 (bias). The bias of a function f : Fn → F is defined to be

bias(f) = EX∈Fn [ωf(X)]

where ω stands for the |F| root of unity, i.e. ω = e
2πi
|F| .
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We use the bias of f as a measure for the distance from uniformity of f(X) ∈ F when
X ∈ Fn is chosen uniformly. The following simple facts explain why we can do so.

Fact 4.1. Let X ∈ Fn be chosen uniformly. Then:

• If f(X) ∈ F is uniform then bias(f) = 0

• If bias(f) ≥ δ > 0 then the statistical distance between f(X) and the uniform distribu-
tion over F is at least δ.

• If the statistical distance between f(X) and the uniform distribution over F is δ, then
there is some c ∈ F, c 6= 0 s.t. bias(cf) ≥ δ′ for δ′ = δ/

√
|F| − 1

Definition 4.2 (rank). Let p(X) be a degree d polynomial over Fn. rankd−1(p) is the smallest
integer k such that there exist degree d − 1 polynomials q1(X), ..., qk(x), and a function
F : Fk → F, such that p(X) = F (q1(X), ..., qk(X)).

Green and Tao [GT07] have shown that over large fields bias implies low rank.

Theorem 4.1 (Theorem 1.7 in [GT07]). Let p(X) be a degree d polynomial over Fn, where
d < |F|. If bias(p) ≥ δ > 0, then rankd−1(p) ≤ c(F, d, δ).

In their paper, Green and Tao conjecture that the restriction d < |F| can be removed,
but their proof technique breaks down when d ≥ |F|. Note that over large fields things might
behave differently than over small fields. One important example is the Inverse Conjecture
for the Gowers Norm. This conjecture roughly says that if the d-derivative of a polynomial is
biased then that polynomial has a non-negligible correlation with some polynomial of degree
d− 1. The Inverse Conjecture for the Gowers Norm was proven to be true over large fields
by [GT07], but was proven to be false over small fields [GT07, LMS08]. One of the main
tools used for proving the conjecture over large fields was Theorem 4.1, that was proven over
large fields.

One could ask what is the case with the above theorem, whether it remains true over
smaller fields or it becomes false there. We show that the [GT07] result is true over general
fields. In this respect, as opposed to the Inverse Conjecture for the Gowers Norm case,large
and small fields behave similarly.

4.1.1 Our Main Results

Our first main theorem is a worst case to average case reduction for polynomials. It says
that a polynomial that can be approximated by few polynomials of bounded degree, can be
computed by few polynomials of bounded degree. We now move to define this rigorously.

Definition 4.3 (δ-approximation). We say a function f : Fn → F δ-approximates p(X) if:

|EX∈Fn [ωp(X)−f(X)]| ≥ δ
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Theorem 4.2 (Worst-case to average case reduction for polynomials of bounded degree).
Let p(X) be a polynomial of degree d, g1, ..., gc polynomials of degree k (where d, c, k are
constants) and F : Fc → F a function s.t. the composition G(x) = F (g1(X), ..., gc(X))
δ-approximates p. Then there exist c′ polynomials h1, ..., hc′ and a function F ′ : Fc′ → F s.t.

F ′(h1(X), ..., hc′(X)) ≡ p(X)

Moreover, c′ = c′(F, d, c, k, δ) (i.e. independent of n) and each hi is of the form p(X + a)−
p(X) or gj(X + a) for a ∈ Fn. In particular, if k ≤ d− 1 then also deg(hi) ≤ d− 1.

Our first main theorem is obtained as a corollary from our second main theorem, Theo-
rem 4.3. This theorem shows that bias implies low rank over general fields.

Theorem 4.3 (Bias implies low rank for general fields). Let p(X) be a degree d polynomial
over Fn, s.t. bias(p) ≥ δ > 0. Then rankd−1(p) ≤ c(F, d, δ). That is, there exist degree-(d−1)
polynomials q1(X), ..., qc(x), and a function F : Fc → F, s.t. p(X) = F (q1(X), ..., qc(X)),
and c = c(F, d, δ). Moreover, q1, ..., qc are derivatives of the form p(X + a) − p(X) where
a ∈ Fn.

Most of the technical part of the paper is dedicated to proving Theorem 4.3. The proof
is by induction on the degree d of p(X). Notice that for d = 1 it holds trivially. So, we
assume Theorem 4.3 to hold for all degrees smaller than d, and prove it for degree d.

4.2 Significance of Results

Worst case to average case reductions for polynomials. Our first main theorem
(Theorem 4.2) shows that every polynomial, not necessarily biased, that is approximated by
few other bounded degree polynomials, can be computed by few bounded degree polynomials.
We view this result as a worst case to average case reduction for polynomials. I.e. in order
to show that a polynomial cannot be approximated by few bounded degree polynomials, it
would be sufficient to show that the polynomial cannot be computed by few bounded degree
polynomials. That later task might be easier. An example when such a scenario is relevant
is the following. The papers [GT07, LMS08] that disprove the Inverse Conjecture for the
Gowers Norm needed to show that the symmetric polynomial S4 over F2, i.e. S4(x1, ..., xn) =∑

i<j<k<l xixjxkxl cannot be approximated by a degree 3 polynomial. Given the current
result it could be sufficient (and maybe easier?) to show that S4 cannot be computed by a
constant number of degree 3 polynomials.

Proof of the Green Tao Conjecture. Our second main theorem (Theorem 4.3) shows
that over general fields there is a phenomena that bias implies low rank. Green and Tao
[GT07] proved this for large fields. They conjectured it to hold also over small fields. We
answer their conjecture affirmatively, by showing that the ”bias imply low rank” phenomena
is robust and holds for all fields.
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On the power of induction and relation to pseudorandom generators. Pseudo-
random generator for polynomials of degree-d is an efficient procedure that stretches s field
elements into n � s field elements that can fool any polynomial of degree d in n variables.
Pseudorandom generators are mostly interesting over small fields. One can use our second
main theorem to provide an alternative proof to the correctness of the pseudorandom gen-
erators of [BV07] that fools degree d polynomials. Specifically, the generator of [BV07] is a
XOR of d copies of the generator of Naor and Naor that fools linear functions. The proof
of correctness of the [BV07] generator of [Vio08] is by induction. The proof assumes the
existence of a pseudorandom generator that fools degree d − 1 polynomial and constructs
from it pseudorandom generator that fools degree d polynomial. The proof of the induction
step is based on the following. Either the polynomial is unbiased, and hence the generator
could fool it. Alternatively, it is biased, and hence again [Vio08] shows that it can be fooled.
By our result here, if the polynomial is biased then it has low rank. One can use the prop-
erty that a generator that can fool a function in the class can fool any composition of few
functions from the class to complete the induction step. This proof method is inspired by
the original argument of [BV07] the relied on the Inverse Conjecture for the Gowers Norm
which turned out to be false. The proof of correctness of Viola [Vio08] is clearly more direct.
However, we still feel that the original proof strategy of [BV07] sheds light on the relations
between structure and pseudorandomness in the realm of low degree polynomials.

The ”bias imply low rank” idea suggests a robust way to construct pseudorandom gen-
erators for some complex function classes based on pseudorandom generators for simpler
function classes. This would be done in the spirit of the induction above. Either a function
is unbiased , in which case it should be easy to claim that it could be fooled based on the
induction assumption, or it is a function of few functions of lower complexity. Use now a
property that a generator that can fool a function in the class can fool any composition of
few functions from the class. Hence, by induction we obtain a construction of pseudoran-
dom generator for functions of higher complexity classes (e.g. degree d polynomials) given
pseudorandom generators for functions of lower complexity classes (e.g. linear functions).

Diakonikolas et al. [DLM+07] suggest a general methodology to test whether a function
on n variables has a concise representation. A tester is a randomized algorithm that should
perform few (even constant many) queries into a given function such that the following holds.
If the function has a concise representation it is accepted, and if it is far from having concise
representation it is rejected. The idea of Diakonikolas et al. is to do testing by implicit
learning. Their work provides property testers for several concise structures among them
are s-sparse polynomials, size-s algebraic circuits and more.

Consider the following definition of concise representation for degree d polynomials. A
polynomial of degree d has a concise representation if it is a function of few polynomials
of lower degree (i.e. if it has a low rank). We argue that one can use the ”bias imply low
rank” theorem in order to construct a tester that test for this concise representation. The
tester first performs a low degree testing e.g. by [RS93] to test that the given polynomial is
of degree at most d, if the degree-tester rejects the tester rejects otherwise, the tester would
approximate the bias of the polynomial. If the bias is large then by our first theorem the
polynomial has low rank and the tester accepts, otherwise it rejects.

The above tester is robust in the following sense. It suggests a methodology for testing
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concise representation of some monotone (with respect to complexity) families (e.g depth
d circuits). The concise representation is with respect to the family. I.e. we would like to
accept an object if it is in the family, and if it can be represented as a function of few other
members of this family, which are of lower complexity. Testing of concise representation for
monotone complexity classes could be done given a membership tester for that family, and
given that the family obeys the ”bias imply low rank” principle. If these two conditions are
met, one can construct a tester. The tester first test membership in the family and then
estimate the bias. If the bias is high the rank is low and concise representation exists.

Extension to tensors Let L(x, y) be a bilinear form over Fn, i.e. a function of the form

L(x, y) = xtAy

where x, y ∈ Fn and A is a matrix. There is a close connection between the rank of the
matrix and the bias of L. Dixon’s Theorem ([MS83]) tells us that the bias of L (and in
fact, all non-zero Fourier coefficients of L) has absolute value c(F)−rank(A+At). The theory
of higher dimensional multilinear forms, i.e. tensors, is much less understood. In particular,
there is no single notion of tensor rank. We prove, as a direct corollary of Theorem 4.3, that
if we define the rank of a tensor as minimal number of lower degree multilinear forms needed
to compute it, then bias imply low rank for tensors.

Theorem 4.4. Let L(X1, ..., Xd) be a multilinear form of degree d s.t. bias(L) ≥ δ > 0.
Then, there exist degree-(d− 1) multilinear forms q1, ..., qc, each operating on d− 1 variables
out of X1, ..., Xd, and a function F : Fc → F, s.t.

L(X1, ..., Xd) = F (q1(X1, ..., Xt1−1, Xt1+1, ..., Xd),

...,

qc(X1, ..., Xtc−1, Xtc+1, ..., Xd))

and c = c(F, d, δ). Moreover, q1, ..., qc are derivatives of L.

Proof. We use Theorem 4.3 on L as a degree d-polynomial, and observe that derivatives of
L are sums of d degree-(d− 1) multilinear forms in d− 1 variables of X1, ..., Xd.

4.2.1 Proof Overview

We will prove that if a degree-d multivariate polynomial over a finite field can be approx-
imated by a function of a constant number of lower degree polynomials, then it in fact be
exactly computed by a function of a (larger) constant number of lower degree polynomials.
Here and in the paper, constant means independent in the number of variables. In fact,
we think of the number of variables as going to infinity, where the rest of the parameters
(field size, degree, number of approximating polynomials) as constants. We denote by p(X)
a multivariate polynomial, where X = (x1, ..., xn) ∈ Fn.

First we reduce the problem to showing that if a polynomial p(X) is biased, then it can
be computed by a function of constant number of lower degree polynomials. The reduction
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is straightforward: if p(X) can be approximated by a function F (g1(X), ..., gk(X)), where
deg(gi) < deg(p) for all i, then there is some linear combination of the gi’s s.t. p(X) +
a1g1(X) + ...+ akgk(X) is biased, and thus can be computed by a constant number of lower
degree polynomials.

We now describe the proof of the main technical part of the paper, that is, if a degree d
polynomial p(X) is biased, then it can be calculated by a constant number of degree d − 1
polynomials (the constant depending only on the field, the degree d, and the bias of p). The
proof is by induction on d. We note that the case d = 1 is trivial.

Green and Tao prove the same result [GT07], when the degree d is bounded by the field
size, d < |F|. The main contribution of this work is extending this proof for all constant
degrees. We will follow closely the proof structure of Green and Tao, and we make one
significant divergence which allows us to make the result hold for all constant degrees.

The proof starts, as in the case of the work of Green and Tao, with a lemma of Bogdanov
and Viola. Bogdanov and Viola [BV07] prove that if a degree-d polynomial p(X) has bias,
then it can be well approximated by a constant number of lower degree polynomials. For-
mally, for every constant ε > 0, there is a function Fs and degree d− 1 polynomials b1, ..., bs
s.t.

Pr
X∈FN

[p(X) = Fs(b1(X), ..., bs(X))] ≥ 1− ε

where s depends only on the field F, the degree d and the required approximation error ε.
Importantly, s doesn’t depend on the number of variables. Bogdanov and Viola in fact show
an explicit construction of such a function F and polynomials b1, ..., bs.

The technical heart of this paper, as well as in the work of Green and Tao [GT07], is
to show that when the approximation is good enough, it can in fact be made into an exact
computation. Note that we can’t use the lemma of Bogdanov and Viola directly, since
choosing ε < |F|−N would result in a non-constant s.

Consider the following partition of Fn given by the joint distribution of the polynomials
(b1, ..., bs). For every c = (c1, ..., cs) ∈ Fs, define the region

Rc = {x ∈ Fn : ∀i bi(x) = ci}

The function Fs assigns a value to each region. We say that the joint distribution of
(b1, ..., bs) is close to uniform, if all the regions are roughly of the same size. That is, given
γ(s) > 0, for every c = (c1, ..., cs) ∈ Fs,

|Rc| =
|F|n

|F|s
(1± γ(s)).

Green and Tao [GT07] show that a set of polynomials (b1, ..., bs) that approximates p
in the above sense, can be transformed into a larger set of polynomials called a regular set
(g1, ..., gt) that approximates p and such that the joint distribution of (g1, ..., gt) is close to
uniform, where t depends only on the field F, the degree d and the required approximation
error γ(t).

Consider now the regions defined by the polynomials (g1, ..., gt). Using averaging argu-
ments the polynomial p is almost constant on most regions. We would like to show that in
fact p is constant on all regions. We first show that if p is almost constant on a region, it
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must be constant on all the region. We then extend this to all regions, assuming p is constant
on most regions.

In order to show this, we first recall basic facts regarding derivatives. For a variable Y ∈
Fn, we define the (discrete) derivative of p(X) in direction Y to be pY (X) = p(X+Y )−p(X).
It is easy to see that the degree of X strictly reduces when taking derivatives. We define
inductively taking multiple derivatives. For Y1, ..., Yd+1 ∈ Fn, consider the derivative of p(X)
in directions Y1, ..., Yd+1:

pY1,...,Yd+1
(X) =

∑
I⊆[d+1]

(−1)d+1−|I|p(X +
∑
i∈I

Yi)

since p is a degree d polynomial, this derivative is identically zero. This will play an important
role in the proof.

Let Rc be some region on which p is almost constant, and fix some x0 ∈ Rc. Let F|Rc
be the value that F assigns to that region. We will show that if Y1, ..., Yd+1 are chosen
uniformly and independently, then there is a positive probability that x0 +

∑
i∈I Yi ∈ Rc for

all I ⊆ [d + 1]. Moreover, since almost all points in x′ ∈ Rc are ”good”, i.e. p(x′) = F|Rc ,
there is in fact a positive probability that they all fall in the ”good” part of Rc, i.e. that
p(x0 +

∑
i∈I Yi) = F|Rc for all I 6= φ. Plugging this into the derivative equation, and using

the fact that it is identically zero, will give that also p(x0) = F|Rc . That is, if a region is
almost constant, then it must be fully constant.

So, we need to prove that if Y1, ..., Yd+1 are chosen uniformly, there is a positive probability
for all x0 +

∑
i∈I Yi to fall in Rc and in fact to behave like a uniform point in Rc. In order

to do so, we need to use the definition of the region Rc.
Consider the joint evaluation of all the polynomials g1, ..., gt on all points (x0 +

∑
i∈I Yi),

i.e. the joint distribution in F(2d+1−1)t of:(
gj(x0 +

∑
i∈I

Yi) : j ∈ [t], I ⊆ [d+ 1], I 6= φ

)
where Y1, ..., Yd+1 are uniform and independent in Fn. (Notice we disallow I = φ, because
it corresponds to the evaluations {gj(x0)}, which are fixed since they do not depend on any
Yi.)

If this distribution was uniform (over F(2d+1−1)t), or even close enough to uniform, there
was a positive probability that for all j ∈ [t] and I ⊆ [d+ 1],

gj(x0 +
∑
i∈I

Yi) = gj(x0)

Hence, all points x0 +
∑

i∈I Yi would belong to Rc as required.
However, there is no reason why the joint distribution of {gj(x0+

∑
i∈I Yi)} should be close

to uniform. One obvious reason is that each polynomial gj is itself a low degree polynomial,
of degree at most d−1. Thus, for any K ⊆ [d+1] s.t. |K| > deg(gj), deriving gj in directions
{Yk : k ∈ K} yields the zero polynomial, and thus we have the following linear relation:∑

I⊆K

(−1)|K|−|I|gj(x0 +
∑
i∈I

Yi) ≡ 0
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Another reason for correlation is that different polynomials among g1, ..., gt can be cor-
relative. For example, we could have that g5 = g1g2 + g3g4.

Green and Tao solve this problem by showing that if there are correlations between the
polynomials, apart from the aforementioned linear relations, then using interpolation over
F there must exist a linear functional over a1g1(X) + ... + atgt(X) which is biased. This
contradicts the fact, achieved in the construction of the gi’s, that the joint distribution of
(g1(X), ..., gt(X) : X ∈ Fn) is extremely close to uniform. They then show that the linear
relations can in fact be dealt with. However, their use of interpolation requires that d < |F|.

We solve the problem in a different way, which allows us to make the result hold for all
constant degrees. We transform our original set of polynomials b1, ..., bs into a strongly-regular
set of low degree polynomial h1, ..., ht, in which we can control all the correlations without
using interpolation. The basic idea is that every hj has an effective degree ∆(hj) ≤ deg(hj),
s.t. in the set

{hj(X +
∑
i∈I

Yi) : j ∈ [t], I ⊆ [d+ 1], |I| ≤ ∆(hj)}

there are no significant correlations, and any hk(X +
∑

i∈K Yi) for |K| > ∆(hk) can be
calculated by a function of {hj(X +

∑
i∈I Yi) : j ∈ [t], I ⊆ K, |I| ≤ ∆(hj)}.

This definition in fact allows us to prove several results showing that certain sets of
evaluations are close to uniform, which are required for the proof.

4.2.2 Organization

The rest of the paper is organized as follows. We define required notation in Section 4.3.
We define and analyze regularity and strongly regularity of polynomials in Section 4.4. We
prove Theorem 4.2 and Theorem 4.3 in Section 4.5.

4.3 Preliminaries

F if a fixed prime field. We work with constant degree polynomials over Fn. We denote
by capital letters X, Y, ... variables in Fn, and by small letters x, y, a, ... values in Fn. We
use the notation Pr for probability measure. Degree of a polynomial will always mean total
degree. Unless otherwise specified, when we speak of a degree d polynomial, we mean in
fact a polynomial of total degree at most d. For a set of variables Y1, Y2, ... ∈ Fn we denote
by YI =

∑
i∈I Yi, and similarly for a set of values y1, y2, ... ∈ Fn. We write u = v(1 ± ε)

for u ∈ [v(1 − ε), v(1 + ε)]. When we speak of a growth function, we mean any monotone
function F : N→ N (for example, F(n) = 2n

2
). We shorthand the set {1, 2, ..., t} by [t].

Definition 4.4 (close to uniform). The joint distribution of the polynomials (g1, ..., gs) is
γ-close to uniform/almost independent, for γ = γ(s) > 0, if for every (c1, ..., cs) ∈ Fs,

Pr
X∈Fn

(∀i ∈ [c], gi(X) = ci) = (1± γ(s))
|F|s

|F|n
.
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4.4 Regularity of polynomials

As we discussed in the introduction, the notion of regularity plays a major role in our proof.
Green and Tao in [GT07] suggested one notion of regularity (we refer to it henceforth as
regularity) which limited their proof to work only for large fields (i.e. d < |F|). We suggest
a stronger notion of regularity (noted henceforth as strong regularity). This new notion of
strong regularity is essential for obtaining a result for general fields. In the following we
review the regularity definitions given by Green and Tao. Then, we present the notion of
strong regularity and show that every set of polynomials which approximates a polynomial
p can be transformed into a larger set that approximates p and is also strongly regular. We
end this section by showing that strong regularity implies almost independence for sets of
variables that forms some specific structures. This almost independence is the crux of the
proof of Theorem 4.3.

Definition 4.5 (Regularity of polynomials). Let F be any growth function. A set of poly-
nomials {g1, ..., gm} is called F-regular if any linear combination α1g1(X) + ...αmgm(X)
cannot be expressed as a function of at most F(m) polynomials of degree k − 1, where
k = max{deg(gi) : αi 6= 0} (i.e. k is the maximal degree of gi appearing in the linear
combination).

Notice we use a growth function F(m) instead of a specific number. The reason is that
in the application we would not be able to control the number m, and would only care about
the relation between the number of polynomials (m) and the strength of the regularity of
the set (F(m)).

Green and Tao also define the notion of a refinement of a set of polynomials. Informally,
a set {g1, ..., gm} is a refinement of {f1, ..., fs} if for any i ∈ [s], fi(x) can be computed given
the values of {g1(x), ..., gm(x)}.

Definition 4.6 (Refinement). A set of polynomials {g1, ..., gm} is a refinement of {f1, ..., fs}
if for any i ∈ [s] there exists a function Fi : Fm → F s.t.

fi(X) = Fi(g1(X), ..., gm(X))

Green and Tao prove that for any growth function F , any set of polynomials F =
{f1, ..., fs} can be refined to a F -regular set {g1, .., gm}, s.t. m depends only on s, F and
the maximal degree in F . Importantly, m is independent of n.

We now discuss the way Green and Tao use the regularity condition, and why it fails
to work when d > |F|. We will then introduce our definition for strong regularity, which
overcomes this obstacle.

As we discussed in the proof overview, if {g1, ..., gm} are F -regular for a large enough F ,
then the joint distribution of

{g1(X), ..., gm(X) : X ∈ Fn}

is close to uniform. Green and Tao need in fact a strong condition from the polynomials
g1, ..., gm in the process of their proof. Let Y1, ..., Yd+1 ∈ Fn be new independent chunks of
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variables. They require that for any x0 ∈ Fn,the joint distribution of

{gi(x0 +
∑
i∈I

Yi) : |I| ≤ deg(gi)}

is also close to uniform. They prove this is true if the field is large (|F| > d). However, over
small fields, this doesn’t hold in general, as the following example shows.

Example 4.1. Consider the symmetric polynomial S4 over F2, i.e.

S4(x1, ..., xn) =
∑

i<j<k<l

xixjxkxl

Consider the fourth derivative of S4, i.e. the polynomial in X, Y1, ..., Y4

G(X, Y1, ..., Y4) =
∑
I⊆[4]

S4(X +
∑
i∈I

Yi)

This polynomial corresponds to the 4-th Gowers Norm of S4, and as was shown in [GT07]
and [LMS08], it has bias 1/8. Thus, the joint distribution of the set

{S4(x0 +
∑
i∈I

Yi) : |I| ≤ deg(S4)}

is not close to uniform. This stands in contrast to the fact that S4(X) is equidistributed over
F2.

Our definition for strong-regularity avoids this obstacles by allowing to effectively reduce
the degree of a polynomial, if it’s high-order derivatives can be calculated from lower-order
ones. In fact, for any polynomial gi we declare an effective degree ∆(gi) ≤ deg(gi). We
require that the set

{gi(X +
∑
i∈I

Yi) : i ∈ [m], |I| ≤ ∆(gi)}

is almost uniform, while for every gk and K s.t. |K| > ∆(gk), gk(X +
∑

iinK Yi) can be
calculated by a function of {gi(X +

∑
i∈I Yi) : i ∈ [m], I ⊆ K, |I| ≤ ∆(gi)}

We now move to formally define our notion of strong regularity, and to show it implies
the almost independence/total dependence structure we have just described. We first define
the notion of a derivative space.

Definition 4.7 (Derivative space). For a set of polynomials F = {f1(X), ..., fs(X)} we
define:

Der(F ) = {fi(X + a)− fi(X) : i ∈ [s], a ∈ Fn}

Similarly, for a set of polynomials in several variable chunks F =
{f1(Y1, ..., Yk), ..., fs(Y1, ..., Yk)} (Y1, ..., Yk ∈ Fn) we define:

Der(F ) = {fi(Y1 + a1, ..., Yk + ak)− fi(Y1, ..., Yk) :

i ∈ [s], a1, ..., ak ∈ Fn}

59



www.manaraa.com

Notice that if the maximal degree of polynomials in F is k, then the maximal degree of
polynomials in Der(F ) is at most k−1. We now formally define strong regularity. We recall
that for a set of variables Y1, Y2, ..., we shorthand YI =

∑
i∈I Yi.

Definition 4.8 (Strong regularity of polynomials). Let F be any growth function. Let
G = {g1, ..., gm} be a set of polynomials and ∆ : G→ N be a mapping from G to the natural
numbers. We say the set G is strongly F-regular with effective degree ∆ if:

1. For any i ∈ [m], 1 ≤ ∆(gi) ≤ deg(gi).

2. For any i ∈ [m] and r > ∆(gi), let X and Y1, Y2, ..., Yr be variables in Fn. There exist
a function Fi,r s.t.

gi(X + Y[r]) =

Fi,r (gj(X + YJ) : j ∈ [m], J ⊆ [r], |J | ≤ ∆(gj))

3. For any r ≥ 0, let X and Y1, ..., Yr be variables in Fn. Let {αi,I}i∈[m],I⊆[r],|I|≤∆(gi) be
any collection of field elements, not all zero. Let a(X, Y1, ..., Yr) stand for the linear
combination:

a(X, Y1, ..., Yr) =
∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI)

Let G′ ⊆ G be the set of all gi’s which appear in a, i.e.:

G′ = {gi ∈ G : ∃I αi,I 6= 0}

There does not exist polynomials h1, ..., hl ∈ Der(G′), l ≤ F(m) s.t. a(X, Y1, ..., Yr)
can be expressed as:

H(h1(X + YI1), ..., hl(X + YIl))

for I1, ..., Il ⊆ [r] and some function H : Fl → F.

If the set G satisfies only (1) and (2), we say G is pre-strong-regular (notice that F
appears only in (3)).

We first prove, similar to the proof in [GT07], that any set of polynomials can be refined
to a strong F -regular set, where the size of the resulting set depends only on the size of the
original set, and the maximal degree of polynomials in it. Also, the refining set is contained
in the space of iterated derivatives of the original polynomials.

We now formally define the space of iterated derivatives.

Definition 4.9 (Space of iterated derivatives). For a polynomial set F , we define its iterated
derivative set DerC to be the set of taking at most C derivatives of F , i.e.

Der0(F ) = F

DerC(F ) = Der(DerC−1(F )) ∪DerC−1(F )
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Lemma 4.1 (Strong-Regularity Lemma). Let F be any growth function. Let F = {f1, ..., fs}
be a set of polynomials of maximal degree k. There exist a refinement G = {g1, ..., gm} of F
s.t.

1. The maximal degree of polynomials in G is also at most k

2. The set G is strong F-regular.

3. The size m of G is a function of only F , s and k. Importantly, it is independent of n.

4. There exists C = C(F , s, k) s.t. G ⊆ DerC(F )

Proof. We will start by defining a pre-strong-regular set G from F , and will keep refining it
until we reach a strong F -regular set. Our set G will also be in Deri(F ) at the i-th iteration.
We will finish by showing that the refinement process must end in a finite number of steps.

We start by defining ∆ : F → N by ∆(fi) = deg(fi), and set the initial value of G to
be F . To show that the initial G is pre-strong-regular with effective degree ∆, observe that
for any r > deg(fi), deriving fi r-times yields the zero polynomial. Thus, if Y1, ..., Yr are
variables, we have the identity:

fi(X + Y[r]) =
∑
I([r]

(−1)r−|I|+1fi(X + YI)

Since we can do this for any r > deg(fi), we can continue and express fi(X+Y[r]) as a linear
combination of {fi(X + YI) : I ⊆ [r], |I| ≤ deg(fi)}. Thus, G is pre-strong-regular with
effective degree ∆.

We will continue to refine G as long as it is not strong F -regular. Assume G = {g1, ..., gm}
at some iteration is not strong-F -regular. By definition, there is some r ≥ 0 and coefficients
{αi,I}i∈[m],I⊆[r],|I|≤∆(gi) s.t. the linear combination:

a(X, Y1, ..., Yr) =
∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI)

can be expressed as a function of l ≤ F(m) polynomials h1, ..., hl ∈ Der(G′), where G′ =
{i ∈ [m] : ∃I αi,I 6= 0} is the set of all gi’s participating in the linear combination.

Let gi0 be a polynomial of maximal degree k in G′ and let I0 be a maximal I in respect
to inclusion s.t. αi0,I0 6= 0. Notice that we must have that |I0| ≤ ∆(gi0). We have:∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI) =

H(h1(X + YJ1), ..., hl(X + YJl))

for some function H : Fl → F.
Notice first that deg(hi) ≤ k− 1 for all i ∈ [l]. Substitute in the expression Yi = 0 for all

i /∈ I0. We get that gi0(X + YI0) can be expressed as a function of {gi0(X + YJ) : J ( I0},
{gj(X+YJ) : j 6= i0, J ⊆ I0, |J | ≤ ∆(gj)} and {hj(X+YJ) : J ⊆ I0, |J | ≤ deg(hj)}. Thus,
if we add the polynomials h1, ..., hl to G (and set ∆(hi) = deg(hi)), we can reduce ∆(gi0) to
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|I0| − 1. If we reduced it to zero, we can remove gi0 entirely from G. The resulting G will
be our set for the next iteration.

In order to prove that the refinement process ends after a finite number of iterations
(depending on the initial size of F and its maximal degree), notice that at each iteration,
the sum of ∆(gi) for all gi ∈ G with some degree d′ reduces by at least 1, where the new
polynomials added are all of degree strictly smaller than d′, and their number is bounded
(as a function of F and the size of G at the beginning of the iteration). So the total number
of iterations is some Ackermann-like function of the initial number of polynomials, their
maximal degree and the growth function F .

4.4.1 Almost independence by strong regularity

We continue by showing that strong regularity induces almost independence/total depen-
dence structure over general sets of variables. The lemmas we derive are the main technical
building blocks in the proof of Theorem 4.3.

We start with a lemma correlating applications of gi on sums below the effective degree
∆ to all sums over a set of variables.

Lemma 4.2. Let G = {g1, ..., gm} be a strong-regular set with effective degree ∆. Let x, x′ ∈
Fn be two points s.t. gi(x) = gi(x

′) for all i ∈ [m]. Let y′1, ..., y
′
k ∈ Fn be values for some

k ≥ 1, and let Y1, ..., Yk ∈ Fn be k random variables. Then the following two events are
equivalent:

1. A = [gi(x+ YI) = gi(x
′ + y′I) for all i ∈ [m] and I ⊆ [k]]

2. B = [gi(x+ YI) = gi(x
′ + y′I) for all i ∈ [m] and I ⊆ [k] s.t. 1 ≤ |I| ≤ ∆(gi)]

Proof. It is obvious that if A holds then also B holds. Assume that B holds, i.e. that

gi(x+ YI) = gi(x
′ + y′i)

for all i ∈ [m] and I ⊆ [k] s.t. |I| ≤ ∆(gi). Take some I s.t. I > ∆(gi). We need to show
that also gi(x + YI) = gi(x

′ + y′I). Since |I| > ∆(gi) we know by the strong regularity of G
that there is a function Fi,I s.t.

gi(X + YI) =

Fi,I (gj(X + YJ) : j ∈ [m], J ⊆ I, |J | ≤ ∆(gj))

By first substituting X = x to compute g(x+YI), and then substituting X = x′ and Yj = y′j
to compute g(x′+ y′I), and using that both gj(x) = gj(x

′) for all j ∈ [m] and the assumption
that B holds, we get that also gi(x+ YI) = gi(x

′ + y′I).

Our next lemma shows that certain evaluations of the polynomials g1, ..., gm on linear
combinations of the inputs are almost independent, assuming the linear combinations don’t
have too many non-zero entries. Remember that we are in the process of proving Theorem 4.3
for degree d by induction. Thus, we assume it to hold for all degrees d′ < d, and in particular
to all linear combinations of g1, ..., gm.

62



www.manaraa.com

Lemma 4.3. Let γ = γ(m) be an error term. Let Y1, ..., Yk ∈ Fn be random variables for
some k ≥ 1. Assume F is large enough (as a function of γ and k). Assume g1, ..., gm are
strong F-regular with effective degree ∆. For any non-empty I ⊆ [k] let xI ∈ Fn be some

point, and a(I) = (a
(I)
1 , ..., a

(I)
k ) ∈ Fk s.t.

• a(I)
i 6= 0 for all i ∈ I

• a(I)
i = 0 for all i /∈ I

Then the joint distribution of(
gi(xI +

∑
i∈I

a
(I)
i Yi) : i ∈ [m], I ⊆ [k], 1 ≤ |I| ≤ ∆(gi)

)

is γ-close to the uniform distribution on F
∑m
i=1

∑∆(gi)
j=1 (kj).

We need the following simple lemma for the proof of Lemma 4.3. It states that a random
derivative of a biased polynomial is also biased.

Lemma 4.4. Let h(Y1, ..., Yk) be a polynomial with bias δ. Let h′ be the derivation of h in
variables Y1, ..., Yr along the directions Z1, ..., Zr, (r ≤ k) i.e.

h′(Y1, ..., Yk, Z1, ..., Zr) =∑
w∈{0,1}r

(−1)|w|h(Y1 + w1Z1, ..., Yr + wrZr, Yr+1, ..., Yk)

where |w| denotes the Hamming weight of w. Then bias(h′) ≥ δ2r .

Proof. We apply Cauchy-Schwarz. It’s enough to prove for k = 2 and r = 1 because we can
group variables.

bias(h′) =EY1,Y2,Z1∈Fn [ωh(Y1,Y2)−h(Y1+Z1,Y2)] =

EY2∈Fn [
(
EY1∈Fn [ωh(Y1,Y2)]

)2
] ≥(

EY1,Y2∈Fn [ωh(Y1,Y2)]
)2

= δ2

Proof. (of Lemma 4.3) We start by using the well known fact, that if a distribution over Fr
is not uniform, it must have some biased functional. If the distribution we study is γ-far
from uniform, then there must be a linear functional on {gi(xI +

∑
i∈I a

(I)
i Yi) : i ∈ [m], I ⊆

[k], |I| ≤ ∆(gi)} with some non-negligible bias depending on γ. We will prove that if we
assume that, we reach a contradiction.

Denote by Y ′I =
∑

i∈I a
(I)
i Yi, and notice it depends on exactly the same set of variables

from Y1, ..., Yk as YI . By our assumption, there exist coefficients {αi,I}, not all zero, s.t. the
polynomial

h(Y1, ..., Yk) =
∑

i∈[m],I⊆[k],|I|≤∆(gi)

αi,Igi(xI + Y ′I )
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has bias at least ρ, where ρ is a function of γ, k and m only (and not of n).
Fix I0 maximal with regards to inclusion s.t. not all αi,I0 are zero. Since we just care

about the bias of h under random Y1, ..., Yk, we can multiply each Yi by some non-zero
coefficient. We thus assume w.l.o.g that a

(I0)
i = 1 for all i ∈ I0. Let |I0| = r. We assume

w.l.o.g that I0 = {1, 2, ..., r}. Notice that Y ′[r] = Y[r]. We also shorthand x = x[r].
Let gi0 be a polynomial with maximal degree d′′ ≤ d′ < d s.t. αi0,I0 6= 0.
We derive now once each of the variables in Y1, ..., Yr. Let {Zi}i=1..r be new variables in

Fn,
and consider:

h′(Y1, ..., Yk, Z1, ..., Zr) =∑
w∈{0,1}r

(−1)|w|h(Y1 + w1Z1, ..., Yr + wrZr, Yr+1, ..., Yk)

First, by Lemma 4.4, h′ has bias at least ρ′ = ρ2k .
Now, consider what happens to a term gi(x + Y ′I ) in h after the derivation. If I 6= [r],

by the maximality of I0 there must exist i′ ∈ [r] s.t. i′ /∈ I. Thus, deriving Yi′ zeroes out
gi(x+ Y ′I ).

So, the only terms remaining in h′ come from terms in h of the form gi(x + Y[r]). Thus,
h′ does not depend on Yi for i /∈ [r], and also all the gi’s remaining must have ∆(gi) ≥ r
(because gi(x+ Y[r]) appeared in h with non-zero coefficient). Thus we can write:

h′ =h′(Y1, ..., Yr, Z1, ..., Zr) =∑
i∈[m]

αi,[r]
∑
w⊆[r]

(−1)|w|gi(x+ Y[r] + Zw)

We now make an important observation. Notice that h′ depends only on the sum Y[r],
and not on the individual Y1, ..., Yr. So we can substitute W = x+ Y[r] and get:

h′ =h′(W,Z1, ..., Zr) =∑
i∈[m]

αi,[r]
∑
w⊆[r]

(−1)|w|gi(W + Zw)

We have assumed that G is strong F -regular. We will show now that if we choose F
large enough, we have already reached a contradiction. Notice the polynomials gi(W + Zw)
are exactly those which appear in the regularity requirements ( where X is replaced here
by W , and Y1, Y2, ... by Z1, Z2, ...). Let G′ denote the set of gi’s s.t. gi appear in h′ with
non-zero coefficient.

We assume by induction that Theorem 4.3 holds for d′′ < d and for all n. Since all
polynomials gi ∈ G have degree at most d−1, then also deg(h′) ≤ d−1, and so we can apply
Theorem 4.3 on h′. So, since h′ has bias ρ′, there must exist polynomials q1, ..., qt ∈ Der(h′)
s.t.

h′(W,Z1, ..., Zr) =

Q(q1(W,Z1, ..., Zr), ..., qt(W,Z1, ..., Zr))
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for some function Q : Ft → F, s.t. t = t(ρ′, d′′). Moreover, since every polynomial qi is of the
form h′(W +a0, Z1 +a1, ..., Zr +ar)−h′(W,Z1, ..., Zr) for some constants a0, ..., ar ∈ Fn, and
h′ is the sum of gi(W +Zw), we can decompose each qi to a sum of at most 2r polynomials of
the form gi(W + Zw + a)− gi(W + Zw) ∈ Der(G′) for w ⊆ {0, 1}r. Let q′1, ..., q

′
t′ ∈ Der(G′)

denote these decomposed polynomials. We thus have that:

h′(W,Z1, ..., Zr) = Q′(q′1(W + ZI′1), ..., q′t′(W + ZI′
t′

))

for some function Q′ : Ft′ → F, t′ = 2rt and I ′1, ..., I
′
t ⊆ [r]. We got that we can compute

h′(W,Z1, ..., Zr) =
∑
i∈[m]

αi,[r]
∑
w⊆[r]

(−1)|w|gi(W + Zw)

as a function of t′ polynomials of degree strictly smaller than d′′. If we have F(m) > t′ this
is a contradiction to the strong F -regularity of g1, ..., gm.

Summarizing, there can be no linear combination of {gi(x+YI) : I ∈ S, 1 ≤ |I| ≤ ∆(gi)}
which has bias more than ρ, and so the distribution is γ-close to uniform.

A Useful corollary of Lemma 4.3 and Lemma 4.2 is the following.

Corollary 4.1. Let x, x′ ∈ Fn be two points s.t. gi(x) = gi(x
′) for all i ∈ [m]. Let y′1, ..., y

′
k ∈

Fn be values for some k ≥ 1, and let Y1, ..., Yk ∈ Fn be k random variables. Then

Pr [gi(x+ YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [k]] =

|F|−
∑m
i=1

∑∆(gi)
j=1 (kj)(1± γ)

4.5 From approximation to computation: Proof of

Theorems 4.2 and 4.3

In this section we prove Theorem 4.2 and Theorem 4.3. We start with the proof of
Theorem 4.2 which follows directly from Theorem 4.3. Assume F (g1(X), ..., gc(X)) δ-
approximates p(X). Develop ωF (z1,...,zc) : Fc → C in the Fourier basis. If F (g1(X), ..., gc(X))
δ-approximates p(X), there must exist some Fourier coefficient which δ′-approximates p ,
where δ′ ≥ δ|F|−c. That means, there exist α1, ..., αc ∈ F s.t. the polynomial

p′(x) = p(x)− (α1g1(x) + ...+ αcgc(x))

has bias at least δ′. Using Theorem 4.3 we get that there must exist at most c′ derivatives
of p′ which computes it exactly. We can now use them and α1g1 + ...αcgc to compute p.

In the remaining of this section we prove Theorem 4.3. The proof will be by induction
on the degree d of the polynomial (notice that for d = 1 Theorem 4.3 is trivial). Let p(X)
stand for a degree d polynomial with bias δ. The proof starts by a lemma of Bogdanov and
Viola [BV07], showing that if a polynomial is biased, then it can be well approximated by
a function a small number of degree d− 1 polynomials. This was also the starting point in
the work of Green and Tao:
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Lemma 4.5 (Bias imply approximation by few lower degree polynomials). Let p(X) be a
polynomial of degree d with bias δ. For any ε > 0 there exist polynomials f1(X), ..., fs(X) of
degree at most d− 1 and a function F : Fs → F s.t.

Pr
X∈Fn

[F (f1(X), ..., fs(X)) 6= p(X)] < ε

The number s of the polynomials depends only on δ and ε. Moreover, f1, ..., fs ∈ Der(p).

The following lemma is the technical heart of the paper.

Lemma 4.6 (Approximation by few lower degree polynomials imply computation by few
lower degree polynomials). Let p(X) be a polynomial of degree d, f1, ..., fs polynomials of
degree d−1, (s = O(1)) and H : Fs → F a function s.t. the composition H(f1(X), ..., fs(X))
εd-approximates p, where εd = 2−Ω(d) Then there exist s′ polynomials f ′1, ..., f

′
s′ and a function

H ′ : Fs′ → F s.t.
H ′(f ′1(X), ..., f ′s′(X)) ≡ p(X)

Moreover, s′ = s′(d, s) (i.e. independent of n) and each f ′i if of the form p(X + a) − p(X)
or fj(X + a) for a ∈ Fn.

Thus, to complete the proof of Theorem 4.3, it remains to prove Lemma 4.6.
In the following we prove Lemma 4.6. The main technical tool that we will use are

Lemmas 4.2 and 4.3. We start the proof of Lemma 4.6 by refining F = {f1, ..., fs} to a
strong-regular set. Let F be a large enough growth function (to be determined later). By
Lemma 4.1 there exists a set G = {g1, ..., gm} refining F , and an effective degree ∆, s.t. G
is strong F -regular with effective degree ∆. Moreover, there exists a C = C(F , d, δ) s.t.
G ⊆ DerC(F ). We know that G also approximates p(X) at least as well as F does. We will
prove that it is in fact computes F completely. We can then decompose each gi ∈ DerC(F )
as a sum of at most 2C elements in Der(p) to conclude the result.

Thus, we need to show that G in fact computes p(X) completely. For c = (c1, ..., cm) ∈
Fm, denote by Rc ⊆ Fn the region

Rc = {x ∈ Fn : ∀i gi(x) = ci}

To show that G computes p(X) is equivalent to showing that p(X) is constant on any region
Rc. Thus, we turn to study the regions Rc.

We first show (Lemma 4.7) that all regions Rc have about the same volume, i.e. that they
form an almost uniform division of Fn to Fm regions. Since G is a strong regular refitment
of F that εd-approximates p we know that also G εd-approximates p, i.e. there exists some
H ′ : Fm → F s.t.

Pr
X∈Fn

[H ′(g1(X), ..., gm(X)) 6= p(X)] < εd

For every region Rc, let ηc be the probability that p is different from G on that region
(G is constant on the region).

ηc = Pr
X∈Rc

[p(X) 6= G|Rc ]
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Since the average of ηc is at most εd, and all regions are almost uniform (Lemma 4.7) there
can be at most

√
εd|F|m regions on which ηc >

√
εd. We call these the bad regions, and we

call the rest of the regions almost good regions. Next we show (Lemma 4.8) that the almost
good regions are totally good and p is fixed on them. Last, we use the fact that there are
only few bad regions and p is fixed on the rest to conclude that p is also fixed on the bad
regions (Lemma 4.10). Thus, p(X) is in fact constant on all regions. To complete the proof
of Lemma 4.6, it remains to prove Lemmas 4.7, 4.8 and 4.10. The following lemma is a direct
implication of Corollary 4.1.

Lemma 4.7 (Regions are uniform). Let γ = γ(m) > 0 be a small enough error term. If F
is large enough than |Rc| = |F|n−m(1± γ), for all c ∈ Fm.

Proof. Let c ∈ Fm and assume first that Rc is not empty, i.e. there exist some x s.t. gi(x) = ci
for all i ∈ [m]. We apply Corollary 4.1 with k = 1, x′ = x and y1 = 0 and get:

Pr
Y1

[gi(x+ Y1) = gi(x), ∀ i ∈ [m]] = |F|−m(1± γ)

Substituting Y = x+ Y1 proves the result for Rc.
To show that there can be no empty regions, assume otherwise. Thus, there are at

most |F|m − 1 non-empty cells, and each has volume at most |F|n−m(1 + γ). Thus (|F|m −
1)|F|n−m(1 + γ) ≥ |F|n. If γ(m) < |F|−m we get a contradiction. Thus, there are no empty
regions, and so all regions have volume |F|n−m(1± γ).

Lemma 4.8 (Almost good regions are good). Let Rc be a region s.t PrX∈Rc [p(X) = b] >
1− 2−2(d+1), for some constant b ∈ F. Then p(X) = b for all X ∈ Rc.

Before proving the lemma we need the following counting lemma on the number of hy-
percubes and pairs of hypercubes inside a region, similar to one in [GT07]. However, our
technique avoids the need of interpolation.

Lemma 4.9. Let γ = γ(m) > 0 be small enough error term, and assume F is large enough.
For any point R = Rc and a point x ∈ R we have:

1. Let Y1, ..., Yd+1 be variables in Fn. Then:

Pr
Y1,...,Yd+1∈Fn

[x+ YI ∈ R, ∀I ⊆ [d+ 1]] =

|F|−
∑m
i=1

∑∆(gi)
j=1 (d+1

j )(1± γ)

2. Let Y1, ..., Yd+1, Z1, ..., Zd+1 be variables in Fn. For any non-empty I0 ∈ [d+ 1]:

Pr [x+ YI ∈ R, x+ ZI ∈ R, ∀I ⊆ [d+ 1]|YI0 = ZI0 ] ≤

|F|m
(
|F|−

∑m
i=1

∑∆(gi)
j=1 (d+1

j )
)2

(1 + γ)

Proof of Lemma 4.9. In the following we show that the two conditions of the lemma hold.
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1. This is a direct application of Corollary 4.1 for k = d+ 1, x′ = x and y1, ..., yk = 0.

2. Assume w.l.o.g that I0 = {1, 2, ..., s} for 1 ≤ s ≤ d + 1. We start by making a linear
transformation on the coordinates to bring YI0 and ZI0 to a single variable. Let Y ′i = Yi
for i 6= s and Y ′s = Y1 + ... + Ys, and similarly define Z ′1, ..., Z

′
d+1. We write YI in the

basis of Y ′1 , ..., Y
′
d+1. Divide I = Is ∪ Is̄ where Is = I ∩ [s] and Is̄ = I \ Is. We have:

• If s /∈ I, YI =
∑

i∈I Y
′
i

• If s ∈ I, YI = Y ′s −
∑

i∈[s]\Is Y
′
i +

∑
i∈Is̄ Y

′
i

Consider for every I the set TI of indices of Y ′i which appear in the expansion of YI .
Notice that for any T ⊆ [d + 1] there is exactly one I s.t. TI = T . In particular, in
order that gi(x+ YI) = gi(x) for all I, we must have in particular that:

• For any I ⊆ [d+ 1] s.t. s /∈ I and |I| ≤ ∆(gi),

gi(x+ Y ′I ) = gi(x)

• For any I ⊆ [d+ 1] s.t. s ∈ I and |I| ≤ ∆(gi),

gi(x+ Y ′s − Y ′I∩[s−1] + Y ′I∩{s+1,...,d+1}) = gi(x)

Similarly for the Z ′’s, using the fact that the event YI0 = ZI0 translates to Z ′s = Y ′s :

• For any I ⊆ [d+ 1] s.t. s /∈ I and |I| ≤ ∆(gi),

gi(x+ Z ′I) = gi(x)

• For any I ⊆ [d+ 1] s.t. s ∈ I and |I| ≤ ∆(gi),

gi(x+ Y ′s − Z ′I∩[s−1] + Z ′I∩{s+1,...,d+1}) = gi(x)

The probability of this event is an upper bound on our required probability. Since our
variables

Y ′1 , ..., Y
′
d+1, Z

′
1, .., Z

′
s−1, Z

′
s+1, ..., Z

′
d+1

are uniform and independent, we can apply Lemma 4.3 to show that its proba-
bility is the required upper bound. The number of subsets of size j > 1 in the
above events is

(
d+1
j

)
for the event on the Y ′’s, and also

(
d+1
j

)
for the event on

Z ′1, ..., Z
′
s−1, Y

′
s , Z

′
s+1, ..., Z

′
d+1. For j = 1 however we have intersection (Y ′s is appearing

twice), and so the number of events is 2
(
d+1

1

)
− 1. Thus,by Lemma 4.3 the probability

of the total event is:

|F|m
(
|F|−

∑m
i=1

∑∆(gi)
j=1 (d+1

j )
)2

(1± γ)

which upper bounds the required probability.
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We now prove Lemma 4.8 using Lemma 4.9. Our proof is similar to the one of [GT07].

Proof of Lemma 4.8. Let B ⊆ R be the set of all ”bad” points x ∈ R on which p(x) 6= b. By
our assumption, |B| < 2−2(d+1)|R|. Assume B is non-empty, and choose some x ∈ B. Let
Y1, ..., Yd+1 be random variables in Fn. Fix small enough γ = γ(m). By Lemma 4.9 (1),

pR = Pr[x+ YI ∈ R, ∀I ⊆ [d+ 1]] ≥

|F|−
∑m
i=1

∑∆(gi)
j=1 (d+1

j )(1− γ)

We now wish to bound the event that when all X + YI are in R, some X + YI is in B,
and then union bound over all possible I.

We start by applying Cauchy-Schwarz to transform the problem to counting pairs of
hypercubes. Fix some non-empty I0 ⊆ [d+ 1], and let

pB = Pr[x+ YI ∈ R ∀I ⊆ [d+ 1] ∧ x+ YI0 ∈ B] =∑
x0∈B

Pr[x+ YI ∈ R ∀I ⊆ [d+ 1] ∧ x+ YI0 = x0]

We need to upper bound pB.

p2
B =

(∑
x0∈B

Pr[x+ YI ∈ R ∀I ⊆ [d+ 1] ∧ x+ YI0 = x0]

)2

≤

|B|
∑
x0∈B

Pr[x+ YI ∈ R ∀I ⊆ [d+ 1] ∧ x+ YI0 = x0]2

Introducing new variables Z1, ..., Zd+1 in Fn, we have.

p2
B ≤ |B|Pr[x+ YI ∈ R ∀I ⊆ [d+ 1] ∧

x+ ZI ∈ R ∀I ⊆ [d+ 1] ∧
x+ YI0 = x+ ZI0 ]

Thus we get that:

p2
B ≤ |B||F|−n Pr[x+ YI ∈ R, x+ ZI ∈ R ∀I ⊆ [d+ 1]|

x+ YI0 = x+ ZI0 ]

By claim (2) in Lemma 4.9 we get that this probability is at most

|B||F|m−np2
R(1 + γ)

By Lemma 4.7, |R| = |F|n PrX∈Fn [X ∈ R] = |F|n−m(1± γ). Thus, we have that:

p2
B ≤

|B|
|R|

p2
R(1± 2γ) ≤ 2−2(d+1)p2

R
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and thus pB
pR
≤ 2−(d+1)(1±2γ). We can now union bound over all non-empty I0 ⊆ [d+ 1].

The probability that there is some I0 for which x+ YI0 ∈ B is at most

(2d+1 − 1)(2−(d+1) + γ) < 1

for small enough γ.
Thus, there must exist y1, ..., yd+1 ∈ Fn s.t.

x+ yI ∈ R \B

for all non-empty I ⊆ [d+ 1]. Equivalently, p(x+ yI) = b for all such I’s. However, since
p(X)y1,...,yd+1

≡ 0,

p(x) =
∑

I⊆[d+1],|I|>0

(−1)|I|+1p(x+ yI)

and so if all p(x + yI) = b, then also p(x) = b, hence x /∈ B. So we have proved that B is
empty, i.e. p is constant on R.

We finish the proof of Lemma 4.6 by proving that if p(X) is constant over almost all
regions, then it must be constant over any region.

Lemma 4.10 (If almost all regions are totally good, all are totally good). Assume that the
fraction of regions on which p is constant is at least 1−2−(d+2). Then p is constant over any
region.

Proof. Let R be any region, and x, x′ ∈ R two points in R. We need to show that p(x) =
p(x′). Choose y′1, ..., y

′
d+1 ∈ Fn randomly. The probability that x′ + y′I falls in a bad region

for any non-empty I ⊆ [d+ 1] is 2−(d+2) (since regions are almost uniform, see Lemma 4.7).
Thus, applying union bound over all non-empty I ⊆ [d+ 1] we get that {x′+y′I} fall in good
regions for all non-empty I with probability at least 1/2. Fix some y′1, ..., y

′
d+1 fulfilling this

requirement.
Let Y1, ..., Yd+1 ∈ Fn be random variables. Since gi(x) = gi(x

′) for all i ∈ [m] we can
apply Corollary 4.1:

Pr [gi(x+ YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [d+ 1]] =

|F|−
∑m
i=1

∑∆(gi)
j=1 (d+1

j )(1± γ)

In particular, for small enough γ we get that

Pr [gi(x+ YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [d+ 1]] > 0

Let y1, ..., yd+1 be such assignment to Y1, ..., Yd+1. We thus have that for all non-empty
I ⊆ [d+ 1] and for all i ∈ [m], gi(x+ yI) = gi(x

′+ y′I). Since the region of x′+ y′I is good for
all non-empty I, we get that for all non-empty I ⊆ [d + 1], p(x + yI) = p(x′ + y′I). We now
use the fact that p is a degree d polynomial. If we derive p d+ 1-times in any direction, we
will always get zero. We thus have that for x, y1, ..., yd+1 ∈ Fn:

∑
I⊆[d+1](−1)|I|p(x+ yI) = 0.

Since the same identity is true for x′, y′1, ..., y
′
d+1, we get that p(x) = p(x′).
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Chapter 5

Random degree d polynomials are far
from d-1 polynomials

We study the problem of how well a typical multivariate polynomial can be approximated
by lower degree polynomials over F. We prove that almost all degree d polynomials have
only an exponentially small correlation with all polynomials of degree at most d − 1, for
all degrees d up to Θ (n). That is, a random degree d polynomial does not admit a good
approximation of lower degree. In order to prove this, we prove far tail estimates on
the distribution of the bias of a random low degree polynomial. Recently, several results
regarding the weight distribution of Reed–Muller codes were obtained. Our results can be
interpreted as a new large deviation bound on the weight distribution of Reed–Muller codes.

Joint work with Ido Ben-Eliezer and Rani Hod.

5.1 Introduction

Two functions f, g : Fn → F are said to be ε-correlated if

Pr [f(x) = g(x)] ≥ 1 + ε

2
.

A function f : Fn → F is said to be ε-correlated with a set of functions F ⊆ Fn → F if it
is ε-correlated with at least one function g ∈ F .

We are interested in functions that have a low correlation with the set of degree d − 1
polynomials; namely, functions that cannot be approximated by any polynomial of total
degree at most d − 1. How complex must such a function be? We use the most natural
measure for complexity in these settings, which is the degree of the function when considered
as a polynomial.

A simple probabilistic argument shows that for any constant δ < 1 and for d < δn,
a random function has an exponentially small correlation with degree d − 1 polynomials.
However, a random function is complex since, with high probability, its degree is at least n−2.
In this work, we study how well a random degree d polynomial can be approximated by any
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lower degree polynomial, and show that with very high probability a random polynomial of
degree d cannot be approximated by polynomials of lower degree in a strong sense. Thus, if
we want to find functions that are uncorrelated with degree d− 1 polynomials, considering
degree d polynomials is enough.

5.1.1 Motivation

The correlation of a typical degree d polynomial with the set of lower degree polynomials is
a natural question in arithmetic complexity. More generally, the study of the correlation of
functions with the set of low degree polynomials is interesting from both coding theory and
complexity theory points of view.

Complexity Theory. Approximation of functions by low degree polynomials is one of the
main tools used in proving lower bounds for constant depth circuits. For example, Razborov
and Smolensky [Raz87, Smo87] provided an explicit function Mod3 that cannot be computed
by a constant depth circuit with a subexponential number of And, Or and Xor gates. The
proof combines two arguments:

1. Any constant depth circuit of subexponential size has a very high correlation (that
is, 1− o (1)) with some polynomial of degree nε;

2. Such a low degree polynomial has a correlation of at most 2/3 with Mod3. (In fact,
this is true for any polynomial of degree at most ε

√
n for some constant ε.)

The best known constructions of explicit functions that cannot be approximated by low
degree polynomials (see, e. g., [BSK08, BNS, Raz87, Smo87, VW08]) fall into two categories:

• For large degree bounds (d < nΩ(1)), there exists a symmetric function with a correla-
tion of at most O (1/

√
n) with degree O (

√
n) polynomials;

• For small degree bounds (d < log n) there are explicit functions having a correlation
of at most exp(−n/cd) with degree d polynomials for some constants c (best known
is c = 2.)

Certain applications, e. g., pseudorandom generator constructions via the Nisan–Wigderson
construction [NW94], require a function having an exponentially small correlation with low
degree polynomials. This is only known for degrees up to log n, while for larger degrees the
best known bound is polynomial in n. Finding explicit functions with a better correlation is
an ongoing quest with limited success. For more details, see a survey by Viola [Vio09].

Coding Theory. The Reed–Muller code RM (n, d) is a linear code in which codewords
correspond to polynomials (over F) in n variables of total degree at most d. This family of
codes is one of the most studied objects in coding theory (see, e.g., [MS83]). Nevertheless,
determining the weight distribution of these codes (for d ≥ 3) is a long standing open
problem. Interpreted in this language, our main lemma gives a new tail estimate on the
weight distribution of Reed–Muller codes.
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5.1.2 Our results

We show that, with very high probability, a random degree d polynomial has an exponentially
small correlation with polynomials of lower degree, i.e. of degree at most d − 1. We prove
this for degrees ranging from a constant up to δmaxn, where 0 < δmax < 1 is an absolute
constant. All results hold for large enough n.

Theorem 5.1 (Main Theorem). There exist constants 0 < δmax < 1 and c, c′ > 0 such that
the following holds. for every d ≤ δmaxn let f be a random n-variate polynomial of degree d.
Then the probability that f has a correlation 2−cn/d with polynomials of degree at most d− 1

is at most 2−c
′( n
≤d), where

(
n
≤d

)
=
∑d

i=0

(
n
i

)
.

The main theorem is an easy corollary of the following lemma, which is the main technical
contribution of the paper. We define the bias of a function f : Fn → F to be

bias (f) = Ex
[
(−1)f(x)

]
= Pr [f (x) = 0]− Pr [f (x) = 1] .

Lemma 5.1 (Main Lemma). Fix ε > 0 and let f be a random degree d polynomial for d ≤
(1− ε)n. Then,

Pr
[
|bias (f)| > 2−c1n/d

]
≤ 2−c2(

n
≤d) ,

where 0 < c1, c2 < 1 are constants depending only on ε.

Note that Lemma 5.1 holds for degrees up to (1− ε)n, while we were only able to prove
Theorem 5.1 for degrees up to δmaxn. The proof of Lemma 5.1 appears in Section 5.2.1.

The following proposition (proved in Section 5.3) shows that the estimate in Lemma 5.1
is somewhat tight for degrees up to n/2.

Proposition 5.1. Fix ε > 0 and let f be a random degree d polynomial for d ≤ (1/2− ε)n.
Then,

Pr
[
|bias (f)| > 2−c

′
1n/d
]
≥ 2−c

′
2(

n
≤d) ,

where 0 < c′1, c
′
2 < 1 are constants depending only on ε.

Our proof of Lemma 5.1 uses the following tight lower bound on the dimension of trun-
cated Reed–Muller codes, which has appeared in [KS05, Theorem 1.5]. For the sake of self
containment, we present an alternative proof of Lemma 5.2. Our proof, unlike the original,
has an algorithmic flavor.

Lemma 5.2. Let x1, . . . , x2m be 2m distinct points in Fn. Consider the linear space of
degree d polynomials restricted to these points; that is, the space

{(p (x1) , . . . , p (x2m)) : p ∈ RM (n, d)} .

The linear dimension of this space is at least
(
m
≤d

)
.
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5.1.3 Related Work

The weight distribution of Reed–Muller codes is completely known for d = 2 (see, for exam-
ple, [CHSL97]) and some partial results are known also for d = 3. In the general case, there
are estimates (see, e.g., [KT70, KTA76]) on the number of codewords with weight between w
and 2.5w, where w = 2−d is the minimal weight of the code. Kaufman and Lovett [KLP10]
proved bounds for larger weights, and following Gopalan et al. [GKZ08], they used it to
prove new bounds for the list-decoding of Reed–Muller codes.

The case of multilinear polynomials was considered by Alon et al. [ABEK08], who proved
a tail estimate similar to Lemma 5.1 and used it to prove bounds on the size of distributions
that fool low degree polynomials. Namely, they prove that for any distribution D that fools
degree d polynomials with error ε,

|support(D)| ≥ Ω

(
(n/2d)d

ε2 log (1/ε)

)
.

Substituting our Lemma 5.1 for [ABEK08, Lemma 1] yields

|support(D)| ≥ Ω

( (
n
d

)
ε2 log (1/ε)

)
,

improving the lower bound for the case of polynomials over Fn by a factor of roughly (2e)d.
The Gowers Norm is a measure related to the approximability of functions by low degree

polynomials. It was introduced by Gowers [Gow01] in his seminal work providing a new
proof for Szemerdi’s Theorem. Using the Gowers Norm machinery, it is easy to prove that a
random polynomial of degree d < log n has a small correlation with lower degree polynomials.
However, this approach fails for degrees exceeding log n. In constrast, note that our result
holds for degrees up to δmaxn.

Green and Tao [GT07] study the structure of biased multivariate polynomials. They
prove that if their degree is at most the size of the field (which in our case is 2), then
they must have structure — they can be expressed as a function of a constant number of
lower degree polynomials. Kaufman and Lovett [KL08] strengthen this structure theorem
for polynomials of every constant degree, removing the field size restriction.

5.2 Proof of the Main Theorem

First we show that Theorem 5.1 follows directly from Lemma 5.1 by a simple counting
argument.

Let f be a random degree d polynomial for d ≤ δmaxn, where δmax will be determined
later. For every polynomial g of degree at most d − 1, f − g is also a random degree d
polynomial. By the union bound for all possible choices of g,

Prf
[
∃g ∈ RM(n, d− 1) : |bias (f − g)| ≥ 2−c1n/d

]
≤ 2( n

≤d−1)−c2(
n
≤d)
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Choosing δmax to be a small enough constant, we get that there is a constant c′ > 0 such
that c2

(
n
≤d

)
−
(

n
≤d−1

)
≥ c′

(
n
≤d

)
for all d ≤ δmaxn (see, for example, [Juk01, Exercise 1.14]).

We now move on to prove Lemma 5.1. To keep the proof’s flow, the rest of this section
is organized as follows. Subsection 5.2.1 presents the gist of the proof, employing several
technical claims. The proofs of these claims are given in Subsection 5.2.2. Lemma 5.2, which
is used by one of the claims but is interesting also out of the context of this proof, is proved
in Subsection 5.2.3.

Claim 5.1

Theorem 5.1 // Lemma 5.1 //

00

..

Claim 5.2

Claim 5.3 //

..

Lemma 5.2 // Proposition 5.2

Claim 5.4

Figure 5.1: Proof tree for Theorem 5.1

5.2.1 Proof of Lemma 5.1

We need to prove that a random degree d polynomial has a very small bias with very high
probability. Denote by RM (n, d)⊥ the dual code of RM (n, d). We start by correlating the
moments of the bias of a random degree d polynomial to short words in RM (n, d)⊥.

Claim 5.1. Fix t ∈ N and let p ∈ RM (n, d) and x1, . . . , xt ∈ Fn be chosen independently
and equiprobably. Then,

E
[
bias(p)t

]
= Pr

[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
,

where ex for x ∈ Fn is the unit vector in F2n, having 1 in position x and 0 elsewhere.

We proceed by introducing the following definitions. Fix d. For x ∈ Fn let evald(x)

denote its d-evaluation; that is, a (row) vector in F( n
≤d) whose coordinates are the evaluation

of all monomials of degree up to d at the point x. Formally,

evald(x) =

(∏
i∈I

x(i)

)
I⊂[n],|I|≤d

.

For points x1, . . . , xt ∈ Fn let Md(x1, . . . , xt) denote their d-evaluation matrix ; this is a
t×
(
n
≤d

)
matrix whose ith row is the d-evaluation of xi. We denote the rank ofMd(x1, . . . , xt)

by rankd(x1, . . . , xt). As this value is independent of the order of x1, . . . , xt, we may refer
without ambiguity to the d-rank of a set S ⊆ Fn by rankd(S).
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According to Claim 5.1, in order to bound the moments of the bias of a random polyno-
mial we need to study the probability that a random word of length about1 t is in RM (n, d)⊥.

Let A =Md(x1, . . . , xt). Note that ex1 + · · ·+ext ∈ RM(n, d)⊥ if and only if ex1 + · · ·+ext
is orthogonal to all degree d polynomials, namely, if

p (x1) + · · ·+ p (xt) = 0 (5.1)

for any degree d polynomial p. It is sufficient to satisfy (5.1) only on the monomial basis
of the degree d polynomials; that is, verify that each column in A sums to zero. Therefore,
ex1 + · · ·+ ext ∈ RM(n, d)⊥ if and only if the sum of the rows of A is zero.

We turn to upper bound the probability that the rows of A sum to the zero vector
for random x1, . . . , xt ∈ Fn. Instead of requiring that every column of A sums to zero, we
require this only for columns corresponding to “special” monomials. For this we divide the n
variables into two sets: L of size l = bn/dc and R of size r = n− l. The special monomials
that interest us are exactly those that contain exactly one variable from the left side L (and
thus up to d− 1 variables from R).

For i = 1, . . . , t denote by yi (∈ Fr) the restriction of xi ∈ Fn to the variables in R.
The following claim bounds the probability that the sum of A’s rows is zero in terms of
α = l/n ≈ 1/d and the (d− 1)-rank of y1, . . . , yt.

Claim 5.2.

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ E{yi}

[
2−rankd−1(y1,...,yt)αn

]
.

To finish the proof, we provide a (general) lower bound on d-ranks of random vectors.

Claim 5.3. For all fixed β < 1 and δ < 1, there exist constants c > 0 and η > 1 such that if
x1, . . . , xt ∈ Fn are chosen uniformly and independently, where t ≥ η

(
n
≤d

)
and d ≤ δn, then

Pr

[
rankd(x1, . . . , xt) < β

(
n

≤ d

)]
≤ 2−c(

n
≤d+1) .

We now put it all together, in order to complete the proof of Lemma 5.1. According to
Claim 5.2, we have

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ E{yi}

[
2−rankd−1(y1,...,yt)αn

]
.

Applying Claim 5.3 for d − 1 and r (instead of d and n in the claim statement), and
assuming t ≥ η

(
r

≤d−1

)
, we get that

Pr

[
rankd−1(y1, . . . , yt) < β

(
r

≤ d− 1

)]
< 2−c(

r
≤d) .

Therefore,

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ 2−β(

r
≤d−1)αn + 2−c(

r
≤d) .

1We say “about t” as x1, . . . , xt might not be distinct.
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Recalling that r = n − bn/dc and α = 1 − r/n = 1/d + O(1/n), we get that for any
constant β (and c = c(β)) there is a constant c′ such that

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ 2−c

′( n
≤d) .

This is because
(

r
≤d−1

)
= Θ

((
n
≤d

)
d/n
)

and
(
r
≤d

)
= Θ

((
n
≤d

))
.

We thus proved that there is a constant c′ such that

Ef∈RM(n,d)

[
bias(f)t

]
≤ 2−c

′( n
≤d) ,

for t = η
(

r
≤d−1

)
= Θ

((
n
≤d−1

))
. Hence, tn/d ≤ c′′

(
n
≤d

)
for some constant c′′.

For small enough c1 > 0 such that c2 = c′ − c′′c1 > 0, by Markov inequality,

Pr
[
|bias(f)| ≥ 2−c1n/d

]
≤ 2tc1n/d−c

′( n
≤d) ≤ 2(c′′c1−c′)( n

≤d) ≤ 2−c2(
n
≤d) .

5.2.2 Proofs of technical claims

Proof of Claim 5.1. Write p as

p(x) =
∑

I⊂[n],|I|≤d

αI
∏
i∈I

x(i) ,

where x(i) denotes the ith coordinate of x ∈ Fn. As p was chosen uniformly, all αI are
uniform and independent over F. Therefore,

Ep
[
(bias(p))t

]
= Ep

[
t∏

j=1

bias(p)

]

= E{αI}

[
t∏

j=1

Exj
[
(−1)

∑
I αI

∏
i∈I xj(i)

]]

= E{xj}

[∏
I

EαI
[
(−1)αI(

∑t
j=1

∏
i∈I xj(i))

]]

= E{xj}

[∏
I

1{∑t
j=1

∏
i∈I xj(i)=0}

]

= Pr{xj}

[
∀I

t∑
j=1

∏
i∈I

xj(i) = 0

]
= Pr{xj}

[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
.

Proof of Claim 5.2. Let A′ =Md−1(y1, . . . , yt) be the t×
(

r
≤d−1

)
sub-matrix of A correspond-

ing to monomials of degree at most d− 1 in variables from R. Let E be the event in which
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every column of A corresponding to a monomial that contains exactly one variable from L
sums to zero.

We observe that this event is equivalent to the event that every column of A′ is orthogonal
to the set of vectors {(x1(i), . . . , xt(i)) : i ∈ L}, as the inner product of every column from
A′ with vectors from this set corresponds to a monomial of degree at most d.

Fix the variables in R; this determines A′. As the variables in L are independent of those
in R, the probability of E (given A′) is(

2−rank(A′)
)|L|

= 2−rank(A′)αn = 2−rankd−1(y1,...,yt)αn .

This holds for every assignment for the variables in L, hence the result follows.

Proof of Claim 5.3. Let B = Md(x1, . . . , xt) be the t ×
(
n
≤d

)
d-evaluation matrix of the

random x1, . . . , xt ∈ Fn. We need to bound the probability that rank(B) < β
(
n
≤d

)
.

Fix some b ≤ β
(
n
≤d

)
, and let us consider the event that the first b rows of B span the

entire row span of B. Denote by V the linear space spanned by the first b rows of B. Since
all rows of B are d-evaluations of some points in Fn, we need to study the maximum number
of d-evaluations contained in a linear subspace of dimension b.

Assume there are at least 2r distinct d-evaluations in V . By Lemma 5.2, dim(V ) ≥
(
r
≤d

)
.

Assume further that rank(B) < β
(
n
≤d

)
; we get that

β

(
n

≤ d

)
> rank(B) ≥ dim(V ) ≥

(
r

≤ d

)
.

By Claim 5.4 below, r ≤ n(1 − γ/d), where γ is a constant depending only on β. In other
words, out of the 2n d-evaluations of all points in Fn, at most 2n(1−γ/d) fall in V and hence
the probability that a random d-evaluation is in V is at most 2−γn/d.

Assume without loss of generality that the number of rows t is exactly η
(
n
≤d

)
for some η >

1. The probability that all the remaining rows of B are in V is at most(
2−γn/d

)t−b ≤ 2−(η−β)( n
≤d)γn/d ≤ 2−γρ(η−β)( n

≤d+1) ,

where the last inequality follows from the fact that there exists a constant ρ > 0 such that
(n/d)

(
n
≤d

)
≥ ρ
(

n
≤d+1

)
for all n and d.

Choosing η > β (and large enough n), we get that when we union bound over all possible
ways to choose at most β

(
n
≤d

)
rows out of t = η

(
n
≤d

)
, the probability that any of them spans

the rows of B is at most 2−c(
n
≤d+1), where c depends only on β.

Claim 5.4. For any β, δ < 1, there is a constant γ = γ(β, δ) such that if 1 ≤ d ≤ δn and
k ≥ d satisfy β

(
n
≤d

)
≥
(
k
≤d

)
then k ≤ n(1− γ/d).

Proof. We bound

1

β
≤
(
n
≤d

)(
k
≤d

) ≤ max
0≤i≤d

(
n
i

)(
k
i

) =

(
n
d

)(
k
d

) =
d−1∏
i=0

n− i
k − i

≤
(
n− d
k − d

)d
=

(
1 +

n− k
k − d

)d
.
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Assuming for the sake of contradiction that k > n(1− γ/d) and taking logarithms, we get

ln
1

β
≤ d ln

(
1 +

n− k
k − d

)
≤ d(n− k)

k − d
<

γn

k − d
<

γ

k/n− δ
<

γ

1− δ − γ/d
.

This can be made false by picking, e.g., γ = (1−δ) ln(1/β)
1+ln(1/β)

.

5.2.3 Proof of Lemma 5.2

Restating the lemma in terms of d-evaluations, we need to show that for every subset S ⊆ Fn
of size 2m, rankd(S) ≥

(
m
≤d

)
. Let S = {x1, . . . , x2m} be the set of points. We simplify S by

applying a sequence of transformations that do not increase its d-rank until we arrive to the
linear space Fm × {0}n−m, whose d-rank is exactly

(
m
≤d

)
.

We now define our basic non-linear transformation Π, mapping the set S to a set Π(S)
of equal size and not greater d-rank. Informally, Π tries to set the first bit of each element
in S to zero, unless this results in an element already in S (and in this case Π keeps the
element unchanged). The operator Π was used in other contexts of extremal combinatorics,
and is usually referred to as the compressing or shifting operator (see, e.g., [Alo83, Fra83].)

For y = (y1, . . . , yn−1) ∈ Fn−1, denote by 0y and 1y the elements (0, y1, . . . , yn−1) and
(1, y1, . . . , yn−1) in Fn, respectively. Extend this notation to sets by writing 0T = {0y : y ∈
T}, 1T = {1y : y ∈ T} for a set T ⊆ Fn−1.

We define the following three sets in Fn−1.

T∗ = {y ∈ Fn−1 : 0y ∈ S and 1y ∈ S} ,
T0 = {y ∈ Fn−1 : 0y ∈ S and 1y /∈ S} ,
T1 = {y ∈ Fn−1 : 0y /∈ S and 1y ∈ S} .

Writing S as
S = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 1T1 ,

we define Π(S) to be
Π(S) = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 0T1 ;

namely, we set to zero the first bit of all the elements in 1T1. It is easy to see that |Π(S)| = |S|
as Π(S) introduces no collisions.

Proposition 5.2. rankd(Π(S)) ≤ rankd(S).

Proof. It will be easier to prove this using an alternative definition for rankd(S).
Let (x1, . . . , x2m) be some ordering of S. For a degree d polynomial p ∈ RM(n, d), let

vp ∈ F2m be the evaluation of p on the points of S

vp = (p(x1), p(x2), . . . , p(x2r)) .

Consider the linear space of vectors vp for all p ∈ RM(n, d). The dimension of this space
is exactly rankd(S), as the monomials used in the definition of d-rank form a basis for the
space of polynomials.

79



www.manaraa.com

But now, instead of the dimension, consider the co-dimension. We call a point xi, 1 ≤ i ≤
2m, dependent if there are coefficients α1, . . . , αi−1 ∈ F such that for all degree d polynomials

p(xi) =
i−1∑
j=1

αjp(xj) .

We thus expressed rankd(S) as the number of independent points in S, which is the same
as the difference between |S| = 2m and the number of dependent points in S. To prove that
rankd(Π(S)) ≤ rankd(S), it suffices to show that Π maps dependent points in S to dependent
images in Π(S). Let us consider an ordering of S in which the elements of 1T1 come last.
Since all other points in S are mapped to themselves by Π, it is clear that dependent points
in S appearing before 1T1 are also dependent in Π(S). It remains to prove the claim for
points in 1T1.

Let t1 = |T1| and let y1, . . . , yt1 be some ordering of T1. Assume 1yi ∈ S is dependent
and we will show that 0yi ∈ Π(S) is also dependent. By definition, there exist coefficients
αy, βy, γy, δy such that, for any degree d polynomial,

p(1yi) =
∑
y∈T∗

αyp(0y) +
∑
y∈T∗

βyp(1y) +
∑
y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyjp(1yj) .

Each polynomial p ∈ RM(n, d) can be uniquely decomposed as

p(x1, . . . , xn) = x1p
′(x2, . . . , xn) + p′′(x2, . . . , xn) ,

where p′ ∈ RM(n − 1, d − 1) and p′′ ∈ RM(n − 1, d). Moreover, for every y ∈ Fn−1, we
have that p(0y) = p′′(y) and p(1y) = p′(y) + p′′(y). Since p′ and p′′ are independent, we can
decompose the dependency of p(1yi) into its p′ and p′′ components as follows.

p′(yi) =
∑
y∈T∗

βyp
′(y) +

∑
yj∈T1:j<i

δyjp
′(yj) , (5.2)

p′′(yi) =
∑
y∈T∗

(αy + βy)p
′′(y) +

∑
y∈T0

γyp
′′(y) +

∑
yj∈T1:j<i

δyjp
′′(yj) . (5.3)

We now move to consider Π(S). Every 1yi for yi ∈ T1 is mapped to 0yi, so we should
only consider the p′′ component for T1’s elements. Also, by the definition of T∗ and T0, for
each y ∈ T∗ ∪ T0, 0y ∈ S ∩ Π(S). By (5.3), for any p ∈ RM(n, d),

p(0yi) =
∑
y∈T∗

(αy + βy)p(0y) +
∑
y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyjp(0yj) ,

that is, 0yi is also dependent in Π(S).
Therefore, we have established that rankd(Π(S)) ≤ rankd(S).

We now combine our basic Π with invertible linear transformations to define a wider
class of simplifying transformations. For any u, v ∈ Fn whose inner product is 〈u, v〉 = 1,
we define the mapping Πu,v as follows. Informally, Πu,v tries to add v to elements x of S for
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which 〈u, x〉 = 1, unless this results in an element already in S. In other words, if both x
and x + v are in S, then Πu,v(S) maps them both to themselves. Otherwise, if just one of
them is in S, it maps it to x if 〈u, x〉 = 0, and to x+ v if 〈u, x+ v〉 = 0. This is well defined
as 〈u, v〉 = 1. Note that Πe1,e1 ≡ Π.

Formally, let A be an n × n invertible matrix such that eT1A = u and A−1e1 = v. We
can construct such invertible A since 〈u, v〉 = 1 by setting the first row of A to be u and
the remaining rows of A to be a basis for the (n− 1)-dimensional space normal to v. Define
Πu,v = A−1ΠA.

Note that this definition is equivalent to the informal one. Assume 〈u, x〉 =
〈
eT1A, x

〉
=

(Ax)1 = 1. Then Π would try to set (Ax)1 to zero, that is, would add e1 to Ax. Applying
A−1, this is the same as adding A−1e1 = v to x.

Observe that invertible affine transformations do not change the d-rank of a set, as they
act as permutations on the set of degree d polynomials. Combining this with Proposition 5.2,
we get that Πu,v maintains the size of S without increasing the d-rank.

We now use a sequence of Πu,v applications to transform the set S into the linear space
V = Fm×{0}n−m spanned by the first m unit vectors e1, . . . , em. We say that x ∈ S is good
if x ∈ V , and is bad otherwise. If all the elements of S are good then S = V since all the
elements of S are distinct. Otherwise, let x ∈ S be some bad element and let x′ ∈ V \ S.
Since x /∈ V , there must be some index m < i ≤ n such that xi = 1; set u = ei and v = x+x′.

We show that applying Πu,v maps x to x′ and does not affect any good elements, thus
increasing the number of good elements. First see that 〈u, v〉 = vi = xi + x′i = 1 + 0 = 1
since x′ ∈ V so Πu,v is well defined. See also that as 〈u, x〉 = xi = 1 and x+ v /∈ S, Πu,v will
add v to x, transforming it to x′ ∈ V . Also, any good element y is unchanged by Πu,v since
〈u, y〉 = yi = 0. In total, the number of good elements increased by at least one.

We repeat this until all elements are good, that is, until S is transformed to V , establishing
that rankd(S) ≥ rankd(V ). To finish the proof, observe that the restriction of polynomials in
RM(n, d) to points in a linear space of dimension m is exactly RM(m, d). Since |RM(m, d)| =(
m
≤d

)
(see [MS83]), we get that for any set S of size 2m,

rankd(S) ≥
(
m

≤ d

)
,

as required.

5.3 Proof of Proposition 5.1

Let d < γn for a constant γ < 1/2. We define a set of polynomials with measure of at least

2−c
′
2(

n
≤d) such that all polynomials in this set have a bias of at least 2−c

′
1n/d (for constants

c′1, c
′
2). That is, we will prove

Prf∈RM(n,d)

[
bias(f) > 2−c

′
1n/d
]
≥ 2−c

′
2(

n
≤d) .

Similar to the proof of Theorem 5.1, we divide the n variables into two sets: L of size
l = dn/de and R of size r = n − l. Consider the set of monomials of degree at most d that
have exactly one variable in L (and thus have degree at most d− 1 in R).
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We first show that the number of such monomials is only a constant factor smaller than
the number of all monomials of degree at most d. The number of monomials we consider is(

l

1

)(
r

≤ d− 1

)
≥ n

d

(
bn(1− 1/d)c

d− 1

)
.

There exists a constant cγ > 0 such that if d < γn then(
bn(1− 1/d)c

d− 1

)
≥ cγ

(
n− 1

d− 1

)
and also

(
n

d

)
≥ cγ

(
n

≤ d

)
.

Hence the number of monomials multilinear in L is at least c2
γ

(
n
≤d

)
.

Let L be the linear space of polynomials on these monomials, |L| ≥ 2c
2
γ( n
≤d). Consider

a random polynomial f ∈ L. Since each monomial of f has exactly one variable in L, we
can decompose f as the sum of products of a variable from L and a random degree d − 1
polynomial from V ′′. That is, if L = {x1, . . . , xl} and R = {xl+1, . . . , xn}, we can write

f(x1, . . . , xn) =
l∑

i=1

xigi(xl+1, . . . , xn) .

We now show f has an expected bias of 2−l ≥ 2−n/d. Consider a partial assignment to
the variables x1, . . . , xl of L. If all of them are zero, then f(0, . . . , 0, xl+1, . . . , xn) ≡ 0, and
hence has bias 1. In all other cases, we are left with a random degree d−1 polynomial in the
variables from R and as such it has bias 0 (e.g., since the constant term is random). Thus,

Ef∈L [bias(f)] = 1 · Pr [∀1 ≤ i ≤ l : xi = 0]

+ 0 · Pr [∃1 ≤ i ≤ l : xi 6= 0] = 2−l ,

and we get that
Pr
[
bias(f) > 2−(l+1)

∣∣f ∈ L] > 2−(l+1) .

We conclude that there is a constant c′2 such that

Pr
[
bias(f) > 2−(n/d+1)

]
≥ Pr [f ∈ L] · Pr

[
bias(f) > 2−(n/d+1)

∣∣f ∈ L] ≥ 2−c
′
2(

n
≤d) .
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Chapter 6

Representation of boolean functions
as polynomials in different
characteristics

Every Boolean function on n variables can be expressed as a unique multivariate polyno-
mial modulo p for every prime p. In this work, we study how the degree of a function in
one characteristic affects its complexity in other characteristics. We establish the follow-
ing general principle: functions with low degree modulo p must have high complexity in every
other characteristic q. More precisely, we show the following results about Boolean functions
f : {0, 1}n → {0, 1} which depend on all n variables, and distinct primes p, q:

• If f has degree o(log n) modulo p, then it must have degree Ω(n1−o(1)) modulo q. Thus
a Boolean function has degree o(log n) in at most one characteristic. This result is
essentially tight as there exist functions that have degree log n in every characteristic.

• If f has degree d = o(log n) modulo p, then it cannot be computed correctly on more

than 1− p−O(d) fraction of the hypercube by polynomials of degree n
1
2
−ε modulo q.

As a corollary of the above results it follows that if f has degree o(log n) modulo p, then it
requires super-polynomial size AC0[q] circuits. This gives a lower bound for a broad and
natural class of functions.

Joint work with Parikshit Gopalan and Amir Shpilka.

6.1 Introduction

Representations of Boolean functions as polynomials in various characteristics have been
studied intensively in Computer science [NS92, Pat92, Bei93, BBR94]. This algebraic view
of Boolean functions has found numerous applications to diverse areas including circuit
lower bounds [Raz87, Smo87, BRS, ABFR94], computational learning [KM93, LMN93, KS01,
MOS03] and explicit combinatorial constructions [Gro00, Gro02, Gop06b, Efr09]. As a purely
algebraic model of computation, polynomial representations lead to some natural complexity
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measures such as exact degree, approximation degree and sparsity needed to represent a
function. In this work, we are primarily concerned with the polynomial degree of a function,
defined as follows:

Definition 6.1. For a Boolean function f : {0, 1}n → {0, 1}, the degree of f in characteristic
k, denoted degk(f), is the degree of the unique multilinear polynomial P (X1, . . . , Xn) ∈
R[X1, . . . , Xn] such that P (x) = f(x) for every x ∈ {0, 1}n, where R = Z/kZ.

We say that the polynomial P represents f over R. The existence and uniqueness of such
a representing polynomial follows from the Möbius inversion formula (see 6.2). Of particular
importance in complexity theory are the cases k = 0 (R = Z) and k = p (R = Fp) for
some prime p; these will also be our primary focus, though we will also consider the case of
composite m. We denote deg0(f) simply by deg(f); it also equals the degree of the Fourier
polynomial for the function (−1)f(x). Let us note a basic relation between these various
degrees, namely that for every f and k, we have

degk(f) ≤ deg(f) .

This is because the polynomial representing f over Z/kZ can be obtained from the repre-
sentation over Z by taking each coefficient modulo k. The gap between these quantities can
be arbitrarily large; consider the function Par(x) =

∑
i xi mod 2. It is easy to show that

deg(Par) = n whereas deg2(Par) = 1. Indeed, it is not hard to show that degp(Par) = n for
every prime p 6= 2.

In this paper, we show that this is an instance of a more general principle:

A function on all n variables which has low degree in characteristic p is bound to have high
degree in every other prime characteristic q 6= p.

Moreover, we prove that any function f where degp(f) = o(log n) is hard to approximate by
low-degree polynomials modulo q, and hence requires large AC0[q] circuits.

6.1.1 Our Results

When we refer to Boolean functions on n variables, we only consider functions where all n
variables are influential. This rules out trivial counterexamples like k-juntas that have low
degree in all characteristics. The following is our main theorem:

Theorem 6.1. (Main) Let f : {0, 1}n → {0, 1} be a Boolean function which depends on all
n variables. Let p 6= q be distinct primes. Then

degq(f) ≥ n

dlog2 pe degp(f)p2 degp(f)
.

This gives a lower bound of Ω(n1−o(1)) on degq(f) as long as degp(f) = o(log n). This
bound is close to the best possible, as there exist functions on all n variables (such as
the addressing function [NS92]) where deg(f) ≤ log n and hence degp(f) ≤ log n for all
characteristics p. Thus, one cannot get nontrivial lower bounds on degq(f) once degp(f)
exceeds log n.
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Nisan and Szegedy showed that any function on n variables must have degree at least
deg(f) ≥ log n − O(log log n) [NS92]. An interesting consequence of 6.1 is the following
analog of the Nisan-Szegedy bound for non-prime power moduli.

Corollary 6.1. Let f : {0, 1}n → {0, 1} be a Boolean function which depends on all n
variables. Suppose m is not a prime power, and p is its smallest prime divisor. We have

degm(f) ≥ 1

2
logp n− logp logp n−

1

2
logpdlog2 pe .

This corollary is interesting as it illuminates a sharp difference between degrees over
composite numbers and over primes. A simple way to construct Boolean functions of degree
O(1) over Fp is to take any constant degree polynomial P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] and
raise it to the power p− 1. This construction fails for composite m since there is no analog
of Fermat’s little theorem. 6.1 shows that indeed any polynomial modulo m computing a
Boolean function requires degree Ω(log n), as it does over the reals.

While 6.1 immediately implies a lower bound for deg(f), one can obtain the following
stronger bound by a simple modification of the Nisan-Szegedy proof:

Lemma 6.1. Let p be a prime and f : {0, 1}n → {0, 1} be a Boolean function which depends
on all n variables. Then

deg(f) ≥ n

2degp(f)
.

We prove this lemma in 6.2.1.
The results above show a very basic relation between the degrees of Boolean functions

over different characteristics. A natural question to ask is what happens if we relax the
requirement and only consider polynomials over Fq that approximate a low degree polynomial
over Fp. However, similarly to the case of degree 1 polynomials that was studied in [Smo87],
we prove that low degree polynomials modulo p are hard to even approximate by polynomials
in other characteristics.

Theorem 6.2. Let f : {0, 1}n → {0, 1} be a function depending on all n variables with
degp(f) = d. Then, for any q 6= p and any Fq polynomial Q(x1, . . . , xn) : Fnq → {0, 1},

satisfying degq(Q) = o

(√
n

dp3d

)
, it holds that

Pr
x∈{0,1}n

[f(x) = Q(x)] ≤ 1− εp−d ,

where ε depends only on p, q.

We note that both the error bound of 1−p−O(d) and the degree bound of o(
√
n) are close

to optimal; there are polynomials of degree d over Fp that are 0 on the boolean hypercube
with probability 1−2−d, hence they have trivial approximations over Fq. Secondly, the Modp
function (and indeed every symmetric function) can be 1−ε approximated by polynomials of
degree c(ε)

√
n over Fq [BGL06], despite being hard to approximate for polynomials of lower

degree.
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As a corollary of 6.2 we get that if a Boolean function has low degree modulo p, then
the function requires large AC0[q] circuits for any prime q 6= p. Several of the known lower
bounds for AC0[q] are for functions like Par and the Modpk function where p 6= q that are
easily seen to be low-degree polynomials in some characteristic. Our result generalizes this to
give a very general class of hard functions for AC0[q], namely all functions that have degree
o(log n) modulo p 6= q.

Theorem 6.3. Let p, q be distinct primes. Let f : {0, 1}n → {0, 1} be a Boolean function
which depends on all n variables with degp(f) = o(logp n). Then any AC0[q] circuit of depth

t computing f requires size at least exp(n(1−o(1))/2t).

It is not hard to see that most known lower bounds for AC0[q] circuits follow from
the theorem above. For example, the lower bound for Modpk of [Smo87] follows from the
observation that degp(Modpk) ≤ pk (see e.g. [BGL06]). Additionally, it gives several new
lower bounds, for instance it shows that every quadratic form on n variables over F2 requires
large AC0[q] circuits, for q 6= 2. Though we note that 6.3 does not imply Razborov’s lower
bound for Majority.

Summarizing, Theorems 6.1 and 6.2 show that for a Boolean function, having low degree
mod p, or even being close to a low degree polynomial mod p, is a “singular” event, in the
sense it can only occur for at most one characteristic p.

6.1.2 Polynomial representations in computer science

The study of polynomial representations of Boolean functions dates at least as far back as
the 1960’s, when they arose in various contexts including switching theory [Mur71], voting
theory [Cho61] and machine learning [MP68]. Representations of Boolean functions over
finite fields, especially over F2 were studied by coding theorists in the context of Reed-
Muller codes, see [MS83, Chapters 13-14] and the references therein. The codewords of the
code RM2(d, n) are all Boolean functions f : {0, 1}n → {0, 1} where deg2(f) ≤ d, while
received words are arbitrary functions f .

Polynomial representations have proved especially useful in circuit complexity [Bei93]
where a natural lower bound technique is to relate concrete complexity measures (such as
circuit-size) which we wish to bound, to purely algebraic complexity measures. Examples
of this paradigm include the Razborov-Smolensky lower bounds for AC0[p] [Raz87, Smo87],
which relates the circuit size to the polynomial degree needed to approximate f over Fp, and
the work of Beigel et al. [BRS] and Aspnes et al. [ABFR94] which relate AC0 circuit size
with approximations by real polynomials.

Polynomial representations are among the most powerful tools in computational learning.
The best learning algorithms for many basic concept classes, including but not limited to
decision trees [KM93], DNF formulae [KS01], AC0 circuits [LMN93, JCJS02], juntas [MOS03]
and halfspaces [ARKS, KKMS05] all proceed by showing that the concept class to be learned
has some nice polynomial representation. In particular, the algorithm for learning juntas of
[MOS03] exploits a connection between deg2(f) and the sparsity of its Fourier polynomial.

Finally, polynomial representations of Boolean functions have found applications to
constructing combinatorial objects such as set systems [Gro00, Gro02], Ramsey graphs
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[Gro00, Gop06b] and locally decodable codes [Efr09]. These results require low-degree weak
representations of simple Boolean functions like the Or function but modulo composites.

Definition 6.2. The polynomial P (x1, . . . , Xn) ∈ Z[X1, . . . , Xn]/mZ weakly represents f :
{0, 1}n → {0, 1} over Z/mZ if f(x) 6= f(y) ⇒ P (x) 6= P (y) (P (x) may take values in
Z/mZ).

Such representations have been well studied in complexity theory (see [BBR94, BGL06]
and the references therein), but embarrassingly simple questions like the degree required
to represent the Or function mod 6 remain open, there is a gap of O(

√
n) [BBR94] versus

Ω(log n) [TB98] between upper and lower bounds. Better upper bounds would lead to im-
proved constructions of all the above combinatorial objects. In [Gop06b], Gopalan proposes
viewing this as a question about the degree of two related functions in distinct characteristics:

Problem 6.1. [Gop06b] If two functions f, g : {0, 1}n → {0, 1} satisfy f(x)∨ g(x) = Or(x),
how small can max(deg2(f), deg3(g)) be?

Questions like this emphasize the importance of the natural and basic question of under-
standing the behavior of degp for various characteristics p.

6.1.3 Techniques

Our proofs are conceptually very simple, we reduce the degree d case to the linear case and
then appeal to known lower bounds. This reduction is carried out via a degree reduction
lemma (6.4) that shows that for any degree d polynomial P (x) over Fp on n variables, there
exist a constant t and a linear combination of the form

P ′(x) =
∑
i≤t

λiP (x+ ai) λi ∈ Fp, ai ∈ Fnp

so that by fixing some variables in P ′ to constants, we get a linear polynomial in many
variables. This lemma is proved using discrete derivatives, a notion that has proved very
useful lately in complexity theory [BV07, Lov08, Vio08].

With this lemma in hand, one would like to proceed as follows: suppose P (x) and Q(x)
represent the same function f over Fp and Fq, and that P (x) has low degree (say a constant).
The polynomial P ′(x) is tightly related to the Modp function, which is known to require high
degree in characteristic q. We would like to claim that the degree of P ′(x) over Fq is a small
multiple of deg(Q), which would then imply that deg(Q) must be large. Implementing this
scheme runs into an obstacle: P ′ is a function that maps Fnp → Fp, further the values ai are
from Fnp , thus while P (x) = Q(x) for x ∈ {0, 1}n, it is unclear how Q(x) can help us evaluate
P (x+ ai).

Most of the technical work in this paper goes towards circumventing this obstacle. The
special case of p = 2 is easier to handle, as since {0, 1} ⊂ Fq one can mimic operations
modulo 2 in characteristic Fq without a large overhead. we present the case of characteristic
2 separately in 6.4. For p > 2, we show that one can still mimic differentiation modulo
p in characteristic q without a large blowup in the degree, however the argument is more
complicated. We present the general case in 6.5.
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6.2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. We will only consider Boolean functions
that depend on all n variables, meaning that they cannot be written as f(x1, . . . , xn) =
g(xi1 , . . . , xik) for some k < n. We start by establishing the correspondence between functions
and polynomials. We state the correspondence in the general setting of any commutative ring
R containing {0, 1}, but we will only be interested in the cases where R is either Z, Z/mZ for
some integer m or a finite field Fq. We say that a polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn]
computes the function f if P (x) = f(x) for all x ∈ {0, 1}n. While there could be many
polynomials that satisfy this condition, if we insist that the polynomial be multilinear (every
variable occurs with degree at most 1), then the polynomial is unique. This can be seen via
the Möbius inversion formula, which gives a unique multilinear polynomial P (x1, . . . , xn) ∈
R[x1, . . . , xn] satisfying P (x) = f(x) for every function f : {0, 1}n → R:

P (x) =
∑
S⊆[n]

cS
∏
i∈S

xi

where cS =
∑
x≤x(S)

(−1)|S|−wt(x)f(x)

where x(S) denotes the indicator vector of the set S, x ≤ x(S) denotes that xi ≤ x(S)i
for every coordinate i and wt(x) denotes the Hamming weight of the vector x. If f is
Boolean, the Möbius inversion shows that the representing polynomial depends only on the
characteristic of R.

We state some basic facts about degk(f), proofs of which can be found in [Gop06a]. The
multilinear polynomial computing f over Z/mZ can be obtained by reducing each coefficient
of the polynomial computing f over Z modulo m, which gives the following:

Fact 6.1. For any f : {0, 1}n → {0, 1}, we have degm(f) ≤ deg(f) for all m. Similarly if
m1|m, then degm1

(f) ≤ degm(f).

A consequence of this inequality is that degm(f) ≤ degmk(f). The following folklore
lemma shows that they are always within a factor 2k of each other.

Fact 6.2. For any f : {0, 1}n → {0, 1}, and integers m, k:

degm(f) ≤ degmk(f) ≤ (2k − 1) degm(f) .

If m = m1m2 where (m1,m2) = 1, then the multilinear polynomial P (x) ∈ Z[x]/mZ is
obtained by combining the coefficients of P1(x) ∈ Z[x]/m1Z and P2(x) = Z[x]/m2Z by the
Chinese Remainder Theorem. Hence

Fact 6.3. Let m = m1m2 where (m1,m2) = 1. Then

degm(f) = max(degm1
(f), degm2

(f)) .

Thus if we know degp(f) for all primes p that divide m, we can use 6.2 and 6.3 to estimate
degm(f) up to a constant factor which is independent of n but depends on m.

We define the function Modm(x) to be 1 whenever
∑

i xi is divisible by m. The degree
of such functions in any characteristic can be computed using the following observation:
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Fact 6.4. For any integer k, and primes p 6= q, we have

degp(Modpk) = pk, degq(Modpk) = Ω(n) .

Finally, we use two lemmas from the work of Razborov and Smolensky showing that
if a Boolean function f can be computed by a small AC0[p] circuit, then f can be well
approximated by low degree polynomials over Fp. The first is their low-degree approximation
lemma for AC0[p] circuits.

Lemma 6.2 ([Raz87, Smo87]). For a prime p, let f be a Boolean function on n variables
that is computed by an AC0[p] circuit of size s and depth t. For every δ > 0, there exists a
polynomial P ∈ Fp[x1, . . . , xn] of degree deg(P ) ≤ (cp log(s/δ))t such that P ({0, 1}n) ⊂ {0, 1}
and

Pr
x∈{0,1}n

[P (x) = f(x)] ≥ 1− δ

for some absolute constant c.

The second lemma shows that the Modp function does not have such an approximation
over Fq.

Lemma 6.3 ([Raz87, Smo87]). For every two primes p 6= q, there exist constants c, ε > 0
depending only on p, q such that for any polynomial Q(x) over Fq of degree at most c

√
n,

Pr
x∈{0,1}n

[Q(x) = Modp(x)] < 1− ε .

We do not care about exact constants in this paper, unless otherwise specified. Hence,
to simplify notation we denote constants by c, where we specify whether these are absolute
constants or depending on some other parameters (i.e. ε, p, q). In all cases constants do not
depend on the number of variables n.

6.2.1 Proof of 6.1

For completeness we give the simple proof of 6.1. The proof follows the Nisan-Szegedy
argument, which gives upper and lower bounds on the average sensitivity of the Boolean
function in terms of deg(f). We observe that the lower bound holds in any characteristic
(but the upper bound holds only for characteristic 0).

Proof of 6.1. Let us define Infi(f) = Prx∈{0,1}n [f(x) 6= f(x⊕ei)] where x⊕ei denotes x with
the ith bit flipped. A simple application of the Schwartz-Zippel lemma shows that

Infi(f) ≥ 1

2degp(f)
hence

∑
i≤n

Infi(f) ≥ n

2degp(f)
.

But by Corollary 1 in [NS92], ∑
i≤n

Infi(f) ≤ deg(f)

which gives the required bound.
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6.3 Degree Reduction

A crucial tool in our proofs is the following Degree reduction lemma that reduces degree
d polynomials in n variables to polynomials with many linear terms. For a polynomial P
define the set L(P ) to be those variables xi appearing as linear terms in P but not in any of
its higher degree monomials.

Lemma 6.4 (Degree Reduction Lemma). Let P (x) be a polynomial of degree d over Fp,
depending on all n variables, such that the individual degree of each variable is at most p−1.

Then there exist t ≤ pd
d−1
p−1
e, a1, . . . , at ∈ Fnp , and λ1, . . . , λt ∈ Fp such that the polynomial

Q(x) =
∑
i≤t

λiP (x+ ai)

satisfies

|L(Q)| ≥ n

dpd
d−1
p−1e

.

The reminder of this section is dedicated to the proof of 6.4. The main idea used is that
if P (x) is a homogeneous degree d polynomial, then taking d − 1 directional derivatives of
P along random directions will yield with high probability a polynomial with many linear
variables. In the non-homogenous case, we have to choose how many times to differentiate
carefully, since for example if the polynomial is X1X2 +X3 +X4 · · ·+Xn, then most of the
variables will disappear after differentiating just once. To get a large linear form from this
polynomial however, we can simply set X1 = X2 = 0. Our final degree reduction procedure
combines these two strategies, we first differentiate and then set some variables to 0 to get
a large linear form.

Finally, for technical reasons, we differentiate multiple times along each direction rather
than choosing multiple directions. While this makes the proof of the degree reduction more
involved, it allows us to get a better dependence on the degree. Roughly speaking, we can
show that degq(f) ≥ n

pdegp(f) , whereas differentiating once along multiple directions would

yield bounds of the form degq(f) ≥ n

2p degp(f) with our proof technique.

We define the monomial degree of a variable xi in a polynomial P (x) to be the maximal
degree of a monomial of P containing xi, and denote it by degi(P ). Note that the monomial
degree of xi is different from its individual degree, which is the highest power of xi that occurs
in P . The main tool we use to prove the lemma is the notion of directional derivatives of a
polynomial. Given a polynomial P , we define the first derivative along y, denoted P(y,1), as

P(y,1)(x) = P (x+ y)− P (x) .

We define the `th derivative along y for ` ≥ 1 inductively as

P(y,`)(x) = P(y,`−1)(x+ y)− P(y,`−1)(x)

when ` ≥ 1. It is easy to verify that

P(y,`)(x) =
∑

0≤j≤`

(−1)`−j
(
`

j

)
P (x+ jy) .
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We define multiple derivatives in multiple directions, which we denote by
P(y(1),`(1)),...,(y(k),`(k))(x). To derive a formula for those derivatives we define the follow-
ing quantity for all `, c:

µ(`, c) =
∑

0≤j≤`

(−1)`−j
(
`

j

)
jc .

The following combinatorial identities are well-known; we prove them for completeness:

Fact 6.5. Let ` ≤ p− 1. Then

µ(`, c) = 0 for c ∈ {0, . . . , `− 1} ,
µ(`, `) 6≡ 0 mod p .

Proof. We prove the first identity by induction on c. The case c = 0 is elementary. To prove
it for c ≥ 1, we consider the following identity over Z

(X − 1)` =
∑

0≤j≤`

(−1)`−j
(
`

j

)
Xj . (6.1)

Differentiating both sides c ≤ `− 1 times and then setting X = 1 gives

0 =
∑

0≤j≤`

(−1)`−j
(
`

j

)
j(j − 1) · · · (j − c+ 1)

= µ(`, c) +
∑

1≤i≤c−1

λ(i)µ(`, i) ,

where the λ(i)-s are some integers. Using the induction hypothesis for i ≤ c − 1 gives
µ(`, c) = 0. To prove µ(`, `) 6≡ 0 mod p we differentiate Equation 6.1 ` times to get

`! =
∑

0≤j≤`

(−1)`−j
(
`

j

)
j(j − 1) · · · (j − `+ 1)

= µ(`, `) +
∑

1≤c≤`−1

λ(c)µ(`, c)

= µ(`, `) .

Since we assume that ` ≤ p− 1 it follows that µ(`, `) = `! 6≡ 0 mod p.

We abbreviate the monomial
∏n

i=1 x
di
i by xd where d = (d1, · · · , dn) is the degree vector.

We use |d| =
∑

i di to denote its total degree. Given vectors d, e we say e ≤ d if ei ≤ di for
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all i, and use the notation
(
d
e

)
=
∏

i

(
di
ei

)
. We have

xd(y,`) =
∑̀
j=0

(−1)`−j
(
`

j

)
(x+ jy)d

=
∑̀
j=0

(−1)`−j
(
`

j

)∑
e≤d

(
d

e

)
xd−e(jy)e

=
∑
e≤d

(
d

e

)
xd−eye

∑̀
j=0

(−1)`−j
(
`

j

)
j|e|

=
∑
e≤d

(
d

e

)
xd−eyeµ(`, |e|)

=
∑
e≤d
|e|≥`

(
d

e

)
xd−eyeµ(`, |e|)

where we use µ(`, |e|) = 0 for |e| ≤ ` − 1. Thus, differentiating ` times along y reduces the
degree in x by at least `, as one would expect.

By repeating this calculation, we can compute an expression for derivatives in multiple
directions. Given vectors d, e(1), . . . , e(k) we use the notation

(
d

e(1),...,e(k)

)
for the product of

multinomials
∏

l∈[n]

( dl

e
(1)
l ,...,e

(k)
l

)
. We have

xd(y(1),`(1)),...,(y(k),`(k)) =∑
e(1)+···+e(k)≤d

(
d

e(1), . . . , e(k)

)
xd−(e(1)+···+e(k)) ·

k∏
j=1

µ(`(j), |e(j)|)(y(j))e
(j)

=

∑
|e(1)|≥`(1),...,|e(k)|≥`(k)

(
d

e(1), . . . , e(k)

)
xd−(e(1)+···+e(k)) ·

k∏
j=1

µ(`(j), |e(j)|)(y(j))e
(j)

.

By linearity, we can compute the derivative of any polynomial P (x) =
∑

d cdx
d.

P(y(1),`(1)),...,(y(k),`(k))(x) =
∑
d

cdx
d
(y(1),`(1)),...,(y(k),`(k)) =

∑
d

cd
∑

|e(1)|≥`(1),...,|e(k)|≥`(k)

(
d

e(1), . . . , e(k)

)
xd−(

∑
j e

(j)) ·
k∏
j=1

µ(`(j), |e(j)|)(y(j))e
(j)

=

∑
f

xf

 ∑
|e(1)|≥`(1),...,|e(k)|≥`(k)

cf+
∑
j e

(j)

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)
·

k∏
j=1

µ(`(j), |e(j)|)(y(j))e
(j)

 (6.2)

where in the last line we use the change of variable f = d −
∑

j e
(j). Recall that we define

degi(P ) to be the largest degree monomial containing the variable xi. It follows that the
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monomial degree of xi drops by at least min(
∑

j `
(j), degi(P )) (note that the degree cannot

drop below zero):

degi(P(y(1),`(1)),...,(y(k),`(k))) ≤ degi(P )−min(
∑
j

`(j), degi(P )) .

Lemma 6.5. Let

degi(P ) = (k − 1)(p− 1) + `+ 1 where `+ 1 ≤ p− 1 ,

`(1) = · · · = `(k−1) = p− 1 and `(k) = ` .

Then the coefficient of xi in P(y(1),`(1)),...,(y(k),`(k))(x) is a non-zero polynomial in y(1), . . . , y(k).

Proof. Observe that
∑

j `
(j) = degi(P )− 1, so

degi(P(y(1),`(1)),...,(y(k),`(k))) ≤ degi(P )−
∑
j

`(j) = 1 .

Our goal is to show that it is in fact 1. Consider the vector f where fi = 1 and fj = 0 for
all j 6= i. By Equation 6.2, the coefficient of xf in P(y(1),`(1)),...,(y(k),`(k))(x) is given by

c′f =
∑

|e(1)|≥`(1),...,|e(k)|≥`(k)

cf+
∑
j e

(j)

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)
·

k∏
j=1

µ(`(j), |e(j)|)(y(j))e
(j)

. (6.3)

We shall now find e(1), . . . , e(k) so that the following conditions hold:

cf+
∑
j e

(j) 6= 0,

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)
6= 0 (6.4)

|e(1)| = · · · = |e(k−1)| = p− 1, |e(k)| = ` . (6.5)

Indeed, Equation 6.5 ensures that µ(`j, |e(j)|) 6= 0. By Equation 6.4 each solution

(e(1), · · · , e(k)) will contribute a non-zero multiple of the monomial
∏k

j=1(y(j))e
(j)

to c′f . Notice
that distinct solutions contribute distinct monomials to the right hand side of 6.3. Hence,
the claim will follow if we show that there is at least one choice of e(1), . . . , e(k) satisfying
Equations 6.4,6.5.

Fix a monomial xd, where |d| = degi(P ) and cd 6= 0, containing the variable xi. Now
|d− f | = (k − 1)(p− 1) + `. It is easy to define e(1), . . . , e(k) so that

|e(1)| = · · · = |e(k−1)| = p− 1, |e(k)| = `

and ∑
j

(e(j))l + fl = dl ∀ l ∈ [n] .
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Note that (
f +

∑
j e

(j)

e(1), . . . , e(k)

)
=
∏
l∈[n]

(
fl +

∑
j(e

(j))l

(e(1))l, . . . , (e(k))l

)
.

As ∑
j

(e(j))l ≤ fl +
∑
j

(e(j))l = dl ≤ p− 1 ,

each binomial coefficient in the product is non-zero mod p. This gives a solution satisfying
both Equations 6.4 and 6.5.

Let δp(d) denote the minimum probability that a nonzero degree d polynomial over Fp
evaluates to zero on a random input. It is well-known (see e.g. [MS83]) that if d = a(p−1)+b
where a ≥ 0 and b ≤ p− 1, then

δp(d) =
1

pa

(
1− b

p

)
≥ p−d

d
p−1e .

Lemma 6.6. Let P (x) ∈ Fp[x] be a degree d polynomial that depends on all n variables.

Then there exist k ≤
⌈
d−1
p−1

⌉
, directions y(1), . . . , y(k) ∈ Fnp and integers `(1), . . . , `(k) ≤ p − 1

such that
|L(P(y(1),`(1)),...,(y(k),`(k)))| ≥

n

dpd
d−1
p−1e

.

Proof. There exists some d′ ≤ d so that degi(P ) = d′ for at least n
d

variables, call this set
of variables G. If d′ = 1, then the claim trivially holds, so assume d′ > 1. Let d′ − 1 =
(k − 1)(p− 1) + ` for ` ≤ p− 2 and set `(1) = · · · = `(k−1) = p− 1, `(k) = `. 6.5 implies that,
for every xi ∈ G, the coefficient ci(y

(1), . . . , y(k)) of xi in P(y(1),`(1)),...,(y(k),`(k)) is a non-zero

polynomial of degree at most d′ − 1 ≤ d− 1 in y(1), . . . , y(k). Thus, there exists a setting for
y1, . . . , yk where at least

δp(d− 1)|G| ≥ n

dpd
d−1
p−1e

of the cis are non-zero. Since variables in G have degree 1 in P(y(1),`(1)),...,(y(k),`(k)), there are no
higher degree terms which contain them, so these variables all lie in L(P(y(1),`(1)),...,(y(k),`(k))).

To complete the proof of 6.4, we observe that P(y(1),`(1)),...,(y(k),`(k)) can be written as

P(y(1),`(1)),...,(y(k),`(k))(x) =
∑
i≤t

λiP (x+ ai)

where t ≤
k∏
j=1

(`(j) + 1) ≤ pd
d−1
p−1e .
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6.4 The case of characteristic 2

Let P (x) be a low degree polynomial over F2. We prove in this section that P must have high
degree over characteristics q 6= 2. Since we will be working with operations over different
fields, we will use + to denote summation modulo q, and ⊕ for summation modulo 2. We
start with some simple claims:

Claim 6.1. Let f(x) = ⊕ni=1xi be the parity function on n bits. Then for q 6= 2, degq(f) = n.

Proof. The unique multilinear polynomial over Fq computing f is

H⊕(x) =
1

2
(1−

n∏
i=1

(1− 2xi))

Lemma 6.7. Let a1, . . . , ak ∈ Fn2 . Define g : {0, 1}n → {0, 1} by g(x) = ⊕ki=1f(x ⊕ ai).
Then

degq(g) ≤ k degq(f) .

Proof. For any a ∈ Fn2 , consider fa(x) = f(x⊕a). Clearly, g(x) = ⊕ki=1fai(x). We claim that
degq(fa) = degq(f). Let Q(x) be a polynomial over Fq which computes f over {0, 1}n. Define
a new polynomial Qa(x) = Q(x⊕a) by replacing xi with 1−xi whenever ai = 1, and keeping
xi whenever ai = 0. Clearly Qa computes fa(x) over {0, 1}n, and degq(Qa) = degq(Q).

Composing the polynomial H⊕ over Fq that computes ⊕ on {0, 1}k with the Qa-s, we
get a polynomial of degree at most k degq(f) that represents g over Fq. Hence, degq(g) ≤
k degq(f).

We now restate and prove 6.1 in the p = 2 case, showing that any Boolean function with
small degree over F2 must have high degree over Fq for a prime q 6= 2.

Theorem 6.4 (6.1, p = 2 case). For any f : {0, 1}n → {0, 1}, and prime q 6= 2:

degq(f) ≥ n

deg2(f)4deg2(f)
.

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function such that deg2(f) = d. Let P (x) be
the degree d polynomial over F2 computing f . We will prove that the multilinear polynomial
Q(x) over Fq computing f has high degree.

By 6.4, there exist a1, . . . , ak ∈ Fn2 , for k ≤ 2d, such that if P̃ (x) = ⊕ki=1P (x ⊕ ai), then
|L(P̃ )| ≥ n

d2d
. Let us denote the set L(P̃ ) by S. Let P̃S be the restriction of P̃ to the

variables in S obtained by fixing the remaining variables to zero. Clearly, P̃S(x) is either
Par on the set S or its negation. Assume w.l.o.g it is the former.

Now consider the polynomial Q. Since Q(x) = f(x) for all x ∈ {0, 1}n, then the polyno-
mial Q̃ defined as Q̃(x) = H⊕(Q(x ⊕ a1), . . . , Q(x ⊕ ak)) satisfies that Q̃(x) = P̃ (x) for all
x ∈ {0, 1}n. So if we let Q̃S be the restriction of Q̃ to the variables in S, then Q̃S(x) = P̃S(x)
for all x ∈ {0, 1}n.
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Now, since P̃S is the parity function over |S| bits, 6.1 implies that deg(Q̃S) = |S| ≥ n
d2d

.

On the other hand, by 6.7 we have that deg(Q̃S) ≤ deg(Q̃) ≤ k degq(f). Therefore we
conclude that

degq(f) ≥ n

kd2d
≥ n

d4d
.

We now generalize this result and show that f cannot be approximated by low degree
polynomials over Fq. We need the following claim, which is proven using the union bound.

Claim 6.2. Let f ′ : {0, 1}n → {0, 1} be such that Prx∈{0,1}n [f ′(x) = f(x)] ≥ 1 − ε. Let
a1, . . . , ak ∈ Fn2 . Then

Pr
x∈{0,1}n

[⊕ki=1f
′(x⊕ ai) = ⊕ki=1f(x⊕ ai)] ≥ 1− kε .

We now restate and prove 6.2 in the p = 2 case.

Theorem 6.5 (6.2, p = 2 case). For a prime q 6= 2 let c, ε > 0 be given by 6.3. Let
f : {0, 1}n → {0, 1} be of degree deg2(f) = d. If h : Fnq → Fq satisfies

Pr
x∈{0,1}n

[h(x) = f(x)] ≥ 1− 2−dε ,

then

degq(h) ≥ c

√
n

d8d
.

Proof. Using 6.4, choose k ≤ 2d and a1, . . . , ak ∈ Fn2 so that there exists a set of variables S
of size |S| ≥ n

d2d
such that the function f̃(x) = ⊕ki=1f(x ⊕ ai) is either Par or its negation

when restricted to the variables in S. Similarly, define h̃(x) = ⊕ki=1h(x⊕ ak). By 6.2 we get
that

Pr
x∈{0,1}n

[f̃(x) = h̃(x)] ≥ 1− k2−dε ≥ 1− ε .

For every assignment b ∈ {0, 1}[n]\S to the variables outside S, define f̃S,b(x) as the restriction
of f̃ to the variables in S, obtained by assigning values to the variables outside S according
to b. Let h̃S,b. We claim there exists some b such that

Pr
x∈{0,1}S

[f̃S,b(x) = h̃S,b(x)] ≥ 1− ε .

Indeed, this is true as for a randomly chosen b,

Eb∈{0,1}[n]\S

[
Pr

x∈{0,1}S
[f̃S,b(x) = h̃S,b(x)]

]
= Pr

x∈{0,1}n
[f̃(x) = h̃(x)] ≥ 1− ε .

We also have degq(h̃S,b) ≤ degq(h̃) ≤ 2d degq(h), where the last inequality uses 6.7. Now,

f̃S,b(x) is either Par or its negation (assume w.l.o.g the former) over |S| variables. Since h̃S,b
approximates Par over |S| variables with probability at least 1− ε, 6.3 implies degq(h̃S,b) ≥
c
√
|S|. Thus

2d degq(h) ≥ deg(h̃S,b) ≥ c

√
n

d2d

which proves the theorem.
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Combining 6.5 with the Razborov-Smolensky bound, we conclude that any AC0[q] circuit
that computes a low F2-degree Boolean function on n variables must be of exponential size.

Theorem 6.6 (6.3, p = 2 case). For any prime q 6= 2, there exist constants c1, c2 so that
any AC0[q] circuit of depth t computing a function f : {0, 1}n → {0, 1} on n variables with

deg2(f) = d requires size c12−d exp((c2
n
d8d

)
1
2t ).

Proof. Assume there is an AC0[q] circuit of size s and depth t computing f . Let ε be the
constant in 6.3. Applying 6.2 with δ = 2−dε, there is some absolute constant c′ and an Fq
polynomial Q of degree deg(Q) ≤

(
c′ log s

2−dε

)t
such that

Pr
x∈{0,1}n

[Q(x) = f(x)] ≥ 1− 2−dε .

By 6.5 we get that deg(Q) ≥ c
√

n
d8d

for some constant c. Hence,

s ≥ c12−d exp

((
c2

n

d8d

) 1
2t

)
,

for absolute constants c1, c2.

6.5 The case of general characteristic

Since we will be working with operations over different fields, we will denote by +p,+q

summation modulo p, q respectively, and by + summation where the context is clear.
In this section we work with polynomials that represent a Boolean function over different

characteristics. Suppose f is a Boolean function with low degree over Fp. Our goal is to
show that some suitable derivative of f is a linear function. We will then try to relate the
degree of this derivative over Fq to degq(f). This scheme becomes harder to implement,
since in differentiating a polynomial over Fnp , we need to take linear combinations of various
points in Fnp . There is no natural way to associate Fnp with a subset of Fnq for p > 2. To
overcome this difficulty, we define a suitable embedding of Fnp to Fnq . While the proof is now
technically harder, the basic idea stays the same.

Let f(x) be a Boolean function. We start by defining a polynomial extending f to a func-
tion F : Fnp → {0, 1}. Given a vector x ∈ Fnp , we define xp−1 = (xp−1

1 , . . . , xp−1
n ) ∈ {0, 1}n,

which is the indicator of whether x is non-zero on each coordinate. Define the function
F : Fnp → {0, 1} by F (x) = f(xp−1). F (x) can be expressed as a polynomial of de-
gree (p − 1) degp(f) by considering the multilinear representation of f over Fp and replac-

ing each variable xi with xp−1
i ; henceforth we shall think of F as this polynomial. Our

goal will be to show that if f has low degree over Fq, then so does F and any func-
tion of the form F (x +p a1) +p . . . +p F (x +p ak). Since these are functions on Fnp , we
need to define the notion of computing functions on Fnp by polynomials over Fq. Set
b = dlog2 pe. We identify the lexicographically first p bit strings in {0, 1}b with the set
{0, . . . , p− 1}. We then identify Fnp with a subset of Fnbq by identifying x = (x1, . . . , xn) ∈ Fnp
with (x1,1, . . . , x1,b, . . . , xn,1, . . . , xn,b) ∈ Fnbq , where the value of xi determines the values of
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(xi,1, . . . , xi,b). Notice that in fact we map Fnp into {0, 1}nb ⊂ Fnbq . Given x ∈ Fnp , we use
x̄ ∈ {0, 1}nb to denote the vector in {0, 1}nb ⊂ Fnbq that represents it. We use x̄i to denote
the vector (xi,1, . . . , xi,b) representing xi. We say that a polynomial G(x) ∈ Fq[x1,1, . . . , xn,b]
computes F : Fnp → {0, 1} if F (x) = G(x̄) for every x ∈ Fnp . We now show that if f has low
degree in Fq, then F (x+p a) can also be computed by a low degree polynomial over Fq.

Lemma 6.8. Let f : {0, 1}n → {0, 1} be a Boolean function. Let F (x) be a polynomial
over Fp defined by F (x) = f(xp−1). Then, for every a ∈ Fnp there is a polynomial Ga(x) ∈
Fq[x1,1, . . . , xn,b] over Fq of degree at most b · degq(f) computing F (x+p a).

Proof. For a = (a1, . . . , an) ∈ Fnp and i ∈ [n] let Ai(x̄i) ∈ Fq[x̄i] be such that deg(Ai) ≤ b and

Ai(x̄i) =

{
0 if xi +p ai = 0 mod p

1 otherwise

Recall that x̄i is a 0/1 vector of length b, therefore we can define Ai to be a multilinear
polynomial by only considering its values on {0, 1}b. When the input to Ai is not a vector
of the form x̄i we allow it to output an arbitrary value in Fq. As Ai is multilinear its degree
is clearly at most b. By definition it follows that (A1(x̄1), . . . , An(x̄n)) = (x +p a)p−1. Let
g : Fnq → Fq be a polynomial of degree degq(f) representing f over Fq. Define the polynomial
Ga(x̄) : Fbnq → Fq as

Ga(x̄) = g(A1(x̄1), . . . , An(x̄n)) .

We have:

Ga(x̄) = g(A1(x̄1), . . . , An(x̄n)) = g((x+p a)p−1) = f((x+p a)p−1) = F (x+p a)

as required, and deg(Ga) ≤ b deg(g) = b degq(f).

As in the proof of 6.7 we shall need to compute Boolean predicates, on expressions of the
form F (x+p a1) +p . . .+p F (x+p ak), by low degree polynomials over Fq.

Corollary 6.2. Let f : {0, 1}n → {0, 1} be a Boolean function and F (x) be a polynomial
over Fp defined by F (x) = f(xp−1). Let a1, . . . , ak ∈ Fnp , λ1, . . . , λn ∈ Fp and t : Fp → {0, 1}
be any Boolean valued predicate on Fp. Define the function T : Fnp → {0, 1} as

T (x) = t

(∑
i≤k

λiF (x+p ai)

)
.

Then, T can be computed by a polynomial over Fq of degree at most kb degq(f).

Proof. By 6.8, each function F (x +p ai) = f((x +p ai)
p−1) can be computed by a poly-

nomial Gi(x̄) over Fq of degree at most b degq(f). The function T (x) is a function of
G1(x̄), . . . , Gk(x̄) ∈ {0, 1}, and thus can be computed by H(G1(x̄), . . . , Gk(x̄)), where
H(z1, . . . , zk) is a multilinear polynomial over Fq computing the function t(λ1z1 +p . . . +p

λkzk) : {0, 1}k → {0, 1}. Thus, T can be computed by a polynomial over Fq of degree at
most kb degq(f).
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We now prove 6.1 in the case of general p.

Proof of 6.1 for general p. Let d = degp(f), and consider F (x) = f(xp−1) which has degree
(p − 1)d. Invoking 6.4 for F (x) which has degree (p − 1)d, we conclude that there exist
k ≤ pd points a1, . . . , ak ∈ Fnp such that G(x) =

∑k
i=1 λiF (x+pai) satisfies |L(G)| ≥ n/(dpd).

Let S = L(G) and rename the variables in S as x1, . . . , xs, where s = |S|. Let GS be the
restriction of G to the variables in S (by setting the other variables to zero). We get that
for some α1, . . . , αn ∈ Fp \ {0} and α0 ∈ Fp,

GS(x) =
s∑
i=1

αixi + α0 .

Let ω be a pth root of unity in the appropriate extension field F = Fqr of Fq. We consider the
function h : {0, 1}s → F, which, by abuse of notations, is given by h(x) = ω

∑
1≤i≤s αixi+pα0 .

Indeed, we think of the expression
∑

1≤i≤s αixi +p α0 as taking values in {0, 1, . . . , p − 1}
and then raise ω to the appropriate power. The unique multilinear polynomial H(x) over F
computing h on {0, 1}s has degree degF(H) = s ≥ n

dpd
and is given by

H(x) = ωα0

s∏
i=1

(1 + (ωαi − 1)xi) .

We now upper-bound deg(H) in terms of degq(f). First, for i ∈ {0, . . . , p − 1} let ti :
Fp → {0, 1} be the predicate indicating whether x ≡ i mod p. Consider the polynomial
Ti : Fnp → {0, 1} defined by Ti = ti(GS(x)). Since GS(x) is obtained by setting some of
the variables in

∑
i λiF (x +p ai) to zero, 6.2 gives degq(Ti) = degq(ti(GS(x))) ≤ kb degq(f).

Notice that as H(x) is unique, it also equal to the multlinearization of the polynomial

H̃(x) =

p−1∑
i=0

ωiTi(x) .

It follows that

s = degF(H) ≤ max
i

degq(Ti(x)) = max
i

degq(ti(GS(x))) ≤ kb degq(f) .

Therefore,

degq(f) ≥ s

bk
≥ n

dlog2 pedp2d
.

We use 6.1 to prove 6.1.

Proof of 6.1. Let p be the smallest prime divisor of m and let q 6= p be another prime divisor.
Note that by 6.3, we have degm(f) ≥ max(degp(f), degq(f)) so it suffices to show that one
of degp(f) or degq(f) exceeds the claimed bound.

So assume that degp(f) ≤ 1
2

logp n− logp logp n− 1
2

logpdlog2 pe. By 6.1, we get

degq(f) ≥ n

dlog2 pe degp(f)p2 degp(f)
≥ logp n

where the last inequality is a simple calculation. This proves the desired bound.
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Next we prove 6.2 showing that functions with low degree over Fp are hard to approximate
over Fq. First we state the theorem precisely.

Theorem 6.7 (6.2 for general p). For any primes p 6= q there exist constants c, ε > 0
depending only on p, q such that the following holds. Let f : {0, 1}n → {0, 1} be a Boolean
function depending on all n variables with degp(f) = d. Let h : Fnq → {0, 1} be any function
satisfying

Pr
x∈{0,1}n

[h(x) = f(x)] ≥ 1− p−dε .

Then

degq(h) ≥ c

√
n

dp3d
.

We start with some technical claims.

Claim 6.3. Let f : {0, 1}n → {0, 1} be a Boolean function, such that degp(f) = d. For
v ∈ {0, 1}n define Fv : Fnp → {0, 1} as

Fv(x) = f(xp−1 ⊕ v)

where for y, v ∈ {0, 1}n, y ⊕ v ∈ {0, 1}n denotes their coordinatewise-Xor. Then Fv is a
polynomial over Fp of degree at most (p− 1)d.

To prove this claim, we construct the polynomial for Fv from the multilinear polynomial
for f by replacing xi with xp−1 or 1 − xp−1 depending on whether or not vi = 0. As this
argument appeared several times before we omit the details.

Claim 6.4. Let f(x) and g(x) be two Boolean functions such that

Pr
x∈{0,1}n

[f(x) = g(x)] ≥ 1− ε .

Then there exists v ∈ {0, 1}n such that if we define Fv(x) = f(xp−1⊕v) and Gv = g(xp−1⊕v)
then

Pr
x∈Fnp

[Fv(x) = Gv(x)] ≥ 1− ε .

Proof. Consider the following expression over a uniform choice of v ∈ {0, 1}n

Ev[ Pr
x∈Fnp

[Fv(x) = Gv(x)]] = Pr
x∈{0,1}n

[f(x) = g(x)] ≥ 1− ε .

Thus the inequality holds for some v ∈ {0, 1}n,

We also need the following analogue of 6.2:

Claim 6.5. Let F (x) and H(x) be functions such that Prx∈Fnp [F (x) = H(x)] ≥ 1 − ε. Let
a1, . . . , ak ∈ Fnp and λ1, . . . , λk ∈ Fp. Then:

Pr
x∈Fnp

[
∑
i

λiF (x+p ai) =
∑
i

λiH(x+p ai)] ≥ 1− kε .
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We now prove 6.7.

Proof of 6.2 in the case of general p. Let f(x) be a Boolean function of small degree d over
Fp. Let h(x) : Fnq → {0, 1} be such that Prx∈{0,1}n [f(x) = h(x)] ≥ 1 − p−dε, for a small
enough ε > 0. We will prove that degq(h) is large. The proof will proceed by a series of
transformations on the pair of functions, such that the pairs generated will remain close, f
will be transformed into the Modp function, whereas h will be transformed into a function
whose degree over Fq is bounded in terms of degq(h). By 6.3, it must then follow that degq(h)
is large. From this point on we shall ‘forget’ that h is defined over Fnq and only consider its
values on {0, 1}n ⊂ Fnq . In other words, we shall think of h as a Boolean function.

The first step is to extend f, h to functions mapping Fnp to {0, 1}. Let Fv(x) = f(xp−1⊕v)
and Hv(x) = h(xp−1 ⊕ v) be mappings from Fnp to {0, 1}. By 6.4, there exists v ∈ {0, 1}n
such that

Pr
x∈Fnp

[Fv(x) = Hv(x)] ≥ Pr
x∈{0,1}n

[f(x) = h(x)] ≥ 1− p−dε .

In addition, the degree of Fv over Fp is at most (p−1)d. The next step is to apply the degree
reduction lemma to Fv. By 6.4, there is some k where

k ≤ pd
deg(Fv)−1

p−1
e ≤ pd

vectors a1, . . . , ak ∈ Fnp and λ1, . . . , λn ∈ Fp, such that for Gf (x) =
∑

i≤k λiFv(x +p ai) (the
sum is addition modulo p) it holds that the set S = L(Gf ) has size s ≥ n

dpd
. Let Gh : Fnp → Fp

be defined as

Gh(x) =
∑
i≤k

λiHv(x+p ai) . (6.6)

6.5 implies that
Pr
x∈Fnp

[Gf (x) = Gh(x)] ≥ 1− kp−dε ≥ 1− ε .

As in the proof of 6.5, there exists an assignment u ∈ F[n]\S
p to the variables outside S so that

the agreement between Gf and Gh is at least as large. To ease notation, we denote these
restrictions also as Gf (x) and Gh(x) (instead of GfS,u(x) and GhS,u(x)). Note that Gf (x) =∑

i≤k αixi +p α0 where for 1 ≤ i ≤ s αi ∈ Fp \ {0}, α0 ∈ Fp and the summation is modulo p.

By replacing each xi in Gf and Gh by α−1
i xi, we get new functions G′f , G

′
h : Fsp → Fp such

that G′f (x) =
∑

i xi +p α0 and

Pr
x∈Fsp

[G′h(x) =
∑
i

xi +p α0] = Pr
x∈Fsp

[G′h(x) = G′f (x)] ≥ 1− ε .

The final step is to convert G′h to a Boolean function approximating the Modp function on s
variables. Towards this, for each w ∈ Fsp, we define hw : {0, 1}s → Fp by hw(y) = G′h(y+pw).
Note that since y +p w is distributed uniformly at random over Fsp we have that

Pr
w∈Fsp

[ Pr
y∈{0,1}s

[hw(y) =
∑
i

yi +p

∑
i

wi +p α0]]

= Pr
x∈Fsp

[G′h(x) =
∑
i

xi +p α0] ≥ 1− ε .
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Thus there exists w so that

Pr
y∈{0,1}s

[hw(y) =
∑
i≤s

yi +p α] ≥ 1− ε

where α = α0 +p

∑
i

wi ∈ Fp .

Define t : Fp → {0, 1} by t(z) = 1 iff z ≡ α mod p and t(z) = 0 otherwise. Finally, let
h̃(y) = t(hw(y)). Notice that t(

∑
i≤s yi +p α) = 1 iff

∑
i≤s yi ≡ 0 mod p. In other words,

t(
∑

i≤s yi +p α) = Modp(y). We thus have

Pr
y∈{0,1}s

[h̃(y) = Modp(y)] ≥ Pr
y∈{0,1}s

[hw(y) =
∑
i≤s

yi +p α] ≥ 1− ε .

Set ε > 0 to be the constant guaranteed by 6.2. By 6.2, there exist a constant c′ > 0 (where
both c′, ε depend only on p, q) such that degq(h̃) ≥ c′

√
s. Our goal now is to relate degq(h)

to degq(h̃). We make the following observations:

1. We have hw(y) = G′h(y +p w).

2. G′h(x) is obtained from Gh(x) by setting variables outside S to constants and replacing
each xi ∈ S by α−1xi.

3. By Equation 6.6, Gh(x) is a linear combination over Fp of values of the form Hv(x+pai).

4. Each Hv(x +p ai) can be computed by a polynomial Qi(x̄) over Fq of degree at most
dlogq pe · degq(h) by an argument similar to 6.8.

Thus, we can write h̃(y) as some predicate t′ : {0, 1}k → {0, 1} applied to a tuple of poly-
nomial Q1, . . . , Qk with degq(Qi) ≤ dlogq pe degq(h), and hence degq(h̃) ≤ kb degq(h). We
conclude that

degq(h) ≥ c′
√
s

kdlogq pe
=

c′

dlogq pe

√
n

dp3d
.

Hence we proved the theorem with the constant c = c′

dlogq pe
.

As a corollary we obtain a lower bound for the size of AC0[q] circuits computing functions
with low degree over Fp.

Theorem 6.8 (6.3, restated). Let p, q be distinct primes. Let f : {0, 1}n → {0, 1} be a
Boolean function depending on all n variables with degp(f) = d. Then any AC0[q] circuit of
depth t computing f requires size at least

c1p
−d exp

(
c2

(
c3

n

dp3d

) 1
2t

)
,

where c1, c2, c3 are constants depending only on p, q. In particular, for d = o(logp n), the

lower bound is exp(n1/2t−o(1)).
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Proof. Assume there is an AC0[q] circuit of size s and depth t computing f . Let ε be the
constant in 6.3. Applying 6.2 with δ = p−dε we get that there is some absolute constant

c′ and an Fq polynomial Q : Fnq → {0, 1} of degree deg(Q) ≤
(
c′p log s

p−dε

)t
such that

Prx∈{0,1}n [Q(x) = f(x)] ≥ 1−p−dε. By 6.7 deg(Q) ≥ c′′
√

n
dp3d for some constant c′′ depending

only on p, q. Hence, for c1 = ε, c2 = c′p, c3 = c′′ we get that

s ≥ c1p
−d exp

(
c2

(
c3

n

dp3d

) 1
2t

)
,

as claimed.

6.6 Open problems

Our work raises some natural questions regarding the relations between degm(f) for various
characteristics, some of which we list below:

1. For any integer m, we have deg(f) ≥ degm(f). What is the largest separation possible
between these quantities when m is not a prime power? For such m, is deg(f) polyno-
mial in degm(f)? We can restate these questions as follows: Can deg(f) be bounded
as a function of degp(f) and degq(f) for distinct primes p and q?

Note that the gap between deg(f) and degm(f) can be unbounded when m is a prime-
power. If m is not a prime power, 6.1 gives an analog of the Ω(log n) Nisan-Szegedy
lower bound for composite moduli. Thus trivially, deg(f) is at most exponential in
degm(f).

2. The following question was posed by Troy Lee: Given a set S of vectors in {0, 1}n,
define Rankp(S) to be the rank of the set S over Fp and Rank(S) to be the rank over R.
Are there non-trivial relations between these ranks? For example, assume that both
Rank2(S) and Rank3(S) are small, say poly(log n). What can be said about Rank(S)?
Note that if we consider only Rank2(S) then the Hadamard matrix is an example of a
full rank matrix over R that has rank log n over F2.
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Part III

Pseudorandom generators for
low-degree polynomials
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Chapter 7

Pseudorandom generators for
low-degree polynomials over finite
fields

We give an explicit construction of a pseudorandom generator against low-degree polynomials
over finite fields. Pseudorandom generators against linear polynomials, known as small-bias
generators, were first introduced by Naor and Naor (STOC 1990). We show that the sum of

2d independent small-bias generators with error ε2
O(d)

is a pseudorandom generator against
degree-d polynomials with error ε. This gives a generator with seed length 2O(d) log (n/ε)
against degree-d polynomails. Our construction follows the breakthrough result of Bog-
danov and Viola (FOCS 2007). Their work shows that the sum of d small-bias generators is
a pseudo-random generator against degree-d polynomials, assuming a conjecture in additive
combinatorics, known as the inverse conjecture for the Gowers norm. However, this conjec-
ture was proven only for d = 2, 3. The main advantage of this work is that it does not rely
on any unproven conjectures.

Subsequently, the inverse conjecture for the Gowers norm was shown to be false for
d ≥ 4 by Green and Tao (2008) and independently by the author, Roy Meshulam, and Alex
Samorodnitsky (STOC 2008). A revised version of the conjecture was proved by Bergelson,
Tao, and Ziegler (2009). Additionally, Viola (CCC 2008) showed the original construction
of Bogdanov and Viola to hold unconditionally.

7.1 Introduction

We are interested in explicitly constructing pseudorandom generators (PRG) against low-
degree polynomials over small finite fields. A pseudorandom generator against a family T
of tests is a function G mapping a small domain into a (much) larger one, such that any
test T ∈ T cannot distinguish, with noticeable probability, a random element in the large
domain from an application of G to a random element in the small domain. We say a PRG
requires R random bits if the size of the small domain is 2R.

In our case, F is a finite field and a test is a polynomial p(x1, . . . , xn) over F. The image
of the PRG is a small subset of Fn, and it is pseudorandom against p(x1, . . . , xn) if the
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distribution of the outcome of p, when applied to a random element in the small subset, is
close to the distribution of the outcome of p, when applied to a uniform element in Fn. We
say the PRG has error ε against p if the statistical distance between the two distributions is at
most ε. We are interested in PRGs that are pseudorandom against all degree-d polynomials
with error ε, and use as few random bits as possible.

The case of pseudorandom generators against linear polynomials, usually called small-
bias generators (or epsilon-biased generators, a term we do not use in this paper to avoid
confusion), was first studied (over F = F2) by Naor and Naor [NN93] and later by Alon,
Goldreich, H̊astad and Peralta [AGHP90]. They and others gave explicit constructions,
which were later generalized to arbitrary finite fields. These constructions have a seed
length which is optimal up to a constant multiplicative factor. The construction of small-bias
generators is a major tool in derandomization, PCPs and lower bounds (see [BSSVW03] and
the references within for details regarding small-bias generators).

The generalization of the problem to constant-degree polynomials was first studied by
Luby, Velickovic, and Wigderson [LVW93]. Their results apply, in fact, to the more general
model of constant depth circuits. In the context of constant degree polynomials, they give
an explicit construction of PRG requiring exp(O(

√
log n/ε)) random bits.

Bogdanov [Bog05] gave a construction of a PRG in large fields. The minimum field size
required for his construction is polynomial in the degree, the required error and the log of
the number of variables. In these settings, his construction is optimal up to polynomial
factors. The proof of his result uses techniques and results from algebraic geometry and
computational algebra.

Recently, Bogdanov and Viola [BV07] presented a novel approach for constructing a PRG
for low-degree polynomials over small fields. Their construction is the sum of d independent
small-bias generators. They showed that, if a conjecture in additive combinatorics called the
inverse conjecture for the Gowers norm holds, then their construction is a PRG for degree-d
polynomials. At the time, the inverse conjecture for the Gowers norm was known to hold
only for degrees 2 and 3, and was conjectured to hold for all constant degrees. Thus, their
construction was known to be correct only for quadratic and cubic polynomials.

Our work was inspired by the work of Bogdanov and Viola, with the goal of making their
construction unconditional, i.e., not relying on any unproven conjectures. We prove that the
sum of 2d independent small-bias generators is pseudorandom against degree-d polynomials,
without relying on any unproven conjectures. Our main theorem is:

Theorem 7.1. There exists a global constant c > 0 such that the following holds. Let
G be a small-bias generator with error ε2

cd
. Then the sum of 2d independent copies of

G is pseudorandom against degree-d polynomials with error ε. In particular, this gives a
pseudorandom generator for degree-d polynomials with error ε using 2cd log(|F|n/ε) random
bits for the seed.

7.1.1 Overview of proof method

This work is inspired by the recent result of Bogdanov and Viola [BV07]. We begin by
providing a high level description of it, since several ideas used in [BV07] are also used in
our work.
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The analysis of [BV07] crucially depended on the inverse conjecture for the Gowers norm.
Although we do not use this conjecture in our proof, we now briefly present and discuss it.
The Gowers norm, first defined by Gowers in his new proof for Szemerédi’s theorem [Gow01],
is a norm measuring the local correlation of a function to low-degree polynomials. Let F = Fq
be a prime finite field, and assume f(x) : Fn → F is a function. The directional derivative
of f in direction y ∈ Fn is defined to be

fy(x) = f(x + y)− f(x).

Notice that if f is a degree-d polynomial, then fy is a polynomial of degree at most d − 1,
hence the term derivative relates to the more common definition of analytical derivative. We
define also iterated derivatives: fy1,...,yk(x) is defined recursively, by taking the k derivatives
in directions y1, . . . , yk. Opening brackets, this gives

fy1,...,yk(x) =
∑

S⊂{1,...,k}

(−1)k−|S|f(x +
∑
i∈S

yi).

The d-th Gowers norm of f is defined as

Ud(f) =
(
Ex,y1,...yd∈Fnq

[
ω
fy1,...,yd

(x)
q

]) 1

2d

,

where ωq = e
2πi
q is a root of unity of order q. It was proved to be a norm on functions (for

d ≥ 2) by Gowers [Gow01].
Assume f is a degree-(d−1) polynomial. Taking d derivatives results in the zero polyno-

mial, so fy1,...,yd ≡ 0 for any choice of y1, . . . ,yd and consequently Ud(f) = 1. It is relatively
easy to see that the converse also holds, that is, Ud(f) = 1 iff f is a polynomial of degree at
most d−1. Alon et al. [NAR03] proved a robust version of this equivalence: the d-th Gowers
norm of f is very close to 1 iff the function f is very close to a degree-(d− 1) polynomial.

The inverse conjecture for the Gowers norm studies the realm of functions with only a
noticeable Gowers norm, that is Ud(f) ≥ δ for some δ > 0. Gowers [Gow01] showed that if f
is only somewhat close to a degree-(d−1) polynomial, that is Prx[f(x) = p(x)] ≥ 1/q+ ε for
some degree-(d− 1) polynomial p(x), then f has a noticeable d-th Gowers norm, Ud(f) ≥ ε′,
where ε′ = Ω(ε).

The converse of this claim is known as the inverse conjecture for the Gowers norm: if
Ud(f) ≥ ε, then there exists a degree-(d − 1) polynomial p such that Prx[f(x) = p(x)] ≥
1/q + ε′, for some ε′ > 0 depending on ε. The case of d = 2 can be proven using standard
Fourier analysis tools [BCH+95]. The case of d = 3 was proven by Green and Tao [GT08]
and independently by Samorodnitsy [Sam07]. Both works conjectured this to hold for any
constant degree.

Returning to the argument of [BV07], Bogdanov and Viola analyze the Gowers norm
of a degree-d polynomial p(x), and present a win-win argument, depending on whether the
Gowers norm is either small or large. In the first case, when the Gowers norm is small,
they show that the sum of d small-bias generators is pseudorandom against p(x), by relating
the distribution of p(x1 + · · · + xd) to the Gowers norm of p. In the latter case, when the
Gowers norm is large, and assuming the inverse conjecture for the Gowers norm holds, p(x)
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is correlated to some degree-(d − 1) polynomial q(x). They use q(x) in order to construct
a circuit that computes p(x) for almost all values of x. The inputs to this circuit are all
degree-(d− 1) polynomials; thus they show that a PRG for degree-(d− 1) polynomials with
small enough error is also pseudorandom against p(x).

Our construction follows similar lines; however, instead of analyzing the Gowers norm of
p(x), we analyze its Fourier coefficients. We also divide our treatment into two cases: when
p has some large Fourier coefficient, and when all the Fourier coefficients of p are small.

In the first case, when p(x) has no large Fourier coefficients, we consider inputs to p of
the form x + y, where x and y are independent. We consider the polynomial

∆p(x′,x′′,y′,y′′) = p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′) .

We prove that it is enough to be pseudorandom against ∆p in order to be pseudorandom
against p(x + y), and also that it is sufficient to have x, x′, x′′, y, y′ and y′′ come from
a PRG that is pseudorandom against degree-(d − 1) polynomials. The reason is that ∆p
contains no degree-d terms in just one of x′, x′′, y′ or y′′. In the second case, when there
is some large Fourier coefficient, we know that p(x) is correlated to some linear function.
Similarly to the second case in [BV07], we also show in that case, or more generally when
p(x) is correlated to some lower degree polynomial, a PRG for degree-(d − 1) polynomials
with small enough error is also pseudorandom against p(x). However, our proof technique
is more direct than the one used in [BV07], which results in better parameters and simpler
analysis.

7.1.2 Subsequent work

This paper is a more polished version of the extended abstract of this work first presented
at STOC 2008. Subsequently, there were advances on two fronts.

First, the inverse conjecture for the Gowers norm was shown to be false for degrees
≥ 4 by Green and Tao [GT07] and independently by Lovett, Meshulam, and Samorodnit-
sky [LMS08]. A revised inverse conjecture for the Gowers norm was proved by Bergelson,
Tao and Ziegler [BTZ09, TZ09].

Additionally, Viola [Vio08] proved the correctness of the construction of [BV07] without
using the inverse conjecture for the Gowers norm, or any other unproven conjectures, thus
making the original construction of [BV07] unconditionally correct. His proof method also
follows similar lines to the works of [BV07] and this work. He considers p(x + y), where x
comes from a distribution which is pseudorandom against degree-(d − 1) polynomials, and
y is a small-bias generator (i.e., pseudorandom against linear polynomials). He also uses a
win-win analysis, based on the bias of the polynomial p, and proves that indeed the sum
x + y fools all degree-d polynomials.

The result presented here can thus be seen as an intermediate step in a sequence of works.
The proof of Viola uses some of the techniques developed in this work, in addition to some
of the original techniques introduced in [BV07] and some clever new ideas.
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7.2 Preliminaries

We work over an arbitrary finite field F. Let U = Un be the uniform distribution over Fn.
We fix e : F→ C to be any non-trivial additive character. For example, in a prime field Fq
we can have e(x) = ωxq where ωq = 2

2πi
q is a root of unity of order q. When we refer to the

degree of a multivariate polynomial, we always mean its total degree. We denote elements
of Fn by x = (x1, . . . , xn).

Definition 7.1. A distribution D over Fn is said to be pseudorandom against a polynomial
p(x1, . . . , xn) with error ε if

|Ex∈D [e(p(x))]− Ex∈U [e(p(x))]| < ε .

Definition 7.2. A distribution D is said to be pseudorandom against degree-d polynomials
with error ε if for every degree-d polynomial p(x1, . . . , xn), D is pseudorandom against p with
error ε.

We study explicit constructions for pseudorandom generators against degree-d polyno-
mials.

Definition 7.3. A function G : {0, 1}r → Fn is said to be a pseudorandom-generator (PRG)
against degree-d polynomials if the distribution obtained by applying G to a uniform element
in {0, 1}r is a pseudorandom distribution against degree-d polynomials. The value in {0, 1}r
is called the seed of G, and r is the seed length of G.

The notion of pseudorandomness we use is different from more standard notions of pseu-
dorandomness. However, since we are working over small fields, they are tightly related. For
example, the following Lemma from [BV07] connects it with the common notion of pseudo-
randomness in statistical distance (The proof in [BV07] is stated just for prime fields, but it
remains correct over arbitrary fields):

Lemma 7.1 (Lemma 33 in [BV07]). Let D be a distribution that is pseudorandom against
degree-d polynomials with error ε. Let p(x1, . . . , xn) be a polynomial of degree at most d.
Let p(D) be the distribution, taking values in F, obtained by applying p to an input chosen
according to D, and similarly p(U) be the distribution of applying p to a uniformly chosen
input in Fn. Then the variation (statistical) distance between p(D) and p(U) is bounded by
1
2
ε
√
|F| − 1.

Remark. Definition 7.2 does not depend on which non-trivial character is used in Defini-
tion 7.1; since we require pseudorandomness for all degree-d polynomials, we can multiply
polynomials by any non-zero constant, thus effectively achieving pseudorandomness for all
non-trivial characters.

We use the Cauchy-Schwarz inequality over the complex numbers in the following form
several times in the proof.

Claim 7.1. Let Z be a random variable taking values in C, then

|E[Z]|2 ≤ E
[
|Z|2

]
.

109



www.manaraa.com

Fourier analysis plays a central role in our proof. In the following we define Fourier
coefficients, and discuss several properties of them required in the proof. We refer to the
first chapter of [Šte00] for a more in-depth introduction to Fourier analysis.

Definition 7.4. The Fourier coefficients of a function f : Fn → C are defined to be

f̂α = Ex∈U [f(x)e(−〈α,x〉)] ,

where α = (α1, . . . , αn) ∈ Fn and 〈α,x〉 = α1x1 + · · ·+αnxn is the inner product of α and x.

The set of functions {e(〈α,x〉) : α ∈ Fn} is an orthonormal basis of the Hermitian space
of functions Fn → C under the inner product

f · g =
1

|Fn|
∑
x∈Fn

f(x)g(x) .

Therefore f can be expressed as

f(x) =
∑
α∈Fn

f̂αe(〈α,x〉) .

For a polynomial p(x) ∈ F[x1, . . . , xn] we define p̂α to be the α Fourier coefficient of the
function e(p(x)), i.e.,

p̂α = Ex∈U [e(p(x)− 〈α,x〉)] .

We will need the following simple fact, which follows from Parseval’s identity and the fact
that |e(p(x))| = 1 for all x ∈ Fn:

Fact 7.1.
∑
α∈Fn
|p̂α|2 = 1.

The basis elements of our analysis are PRGs for degree-1 polynomials. PRGs for this
family have been studied extensively, and are usually referred to as small-bias (or epsilon-
biased) generators or distributions. Formally we define:

Definition 7.5. A distribution D is called a small-bias distribution over Fn with error δ if
for all linear polynomials p(x) = a1x1 + · · ·+ anxn we have

|Ex∈D [e(p(x))]− Ex∈U [e(p(x))]| < δ . (7.1)

Constructions of small-bias distributions were first studied by Naor and Naor over F2

in [NN93], and optimal up to constant constructions were later given by Alon, Goldreich,
H̊astad, and Peralta [AGHP90] over general fields. Such constructions can be achieved by
explicit pseudorandom generators with seed length O(log(|F|n/ε)).
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7.3 Main theorem

We restate our main theorem with explicit constants:

Theorem 7.2. Let G : {0, 1}r → Fn be a small-bias generator over Fn with error (ε/10)4d.
Then the sum of 2d independent copies of G is pseudorandom against degree-d polynomials
with error ε. That is, G′ : {0, 1}r·2d → Fn defined as

G′(x1, . . . ,x2d) = G(x1) + . . .+G(x2d)

is a PRG against degree-d polynomials with error ε.

Our proof is divided into two cases, based on whether p has some large Fourier coefficient,
or does not have any large Fourier coefficients. We show that when a degree-d polynomial
p(x) has some large Fourier coefficient, then a PRG for degree-(d − 1) polynomials, with
better error, is also pseudorandom against p. On the other hand, if p has no large Fourier
coefficients, it is “pseudorandom” in a sense, and then the sum of two PRGs for degree-(d−1)
is pseudorandom against p.

We divide the proof into two technical lemmas, dealing with the cases of whether p has
some large Fourier coefficient, or it does not.

Lemma 7.2. Let p(x1, . . . , xn) be a degree-d polynomial over Fn, such that for all α ∈ Fn,
|p̂α| < ε2/10. Let D be a distribution that is pseudorandom against degree-(d−1) polynomials
with error ε4/400. Then x+y, where x, y are independently chosen from D, is pseudorandom
against p with error ε.

Lemma 7.3. Let p(x1, . . . , xn) be a degree-d polynomial over Fn, such that |p̂α| ≥ ε2/10 for
some α ∈ Fn. Let D be a distribution that is pseudorandom against degree-(d−1) polynomials
with error ε3/10. Then D is pseudorandom against p(x) with error ε.

Assuming these two lemmas, our main theorem now follows directly, by also using the fol-
lowing simple observation. This observation allows us to add “extra” small-bias distributions
without harming our PRG construction.

Observation 7.1. Let D be a distribution that is pseudorandom against degree-d polynomials
with error ε. Let D′ be any other independent distribution. Then the distribution of x + y,
where x ∈ D and y ∈ D′ is also pseudorandom against degree-d polynomials with error ε.

We now prove Theorem 7.2, assuming Lemmas 7.2 and 7.3 and Observation 7.1:

Proof. We prove, by induction on d, that the sum of 2d independent small-bias generators
with error (ε/10)4d is pseudorandom against degree-d polynomials with error ε. For d = 1 this
is clear. For d > 1, let D′ be the distribution of sum of the first 2d−1 small-bias generators,
which is also the distribution of the sum of the last 2d−1 small-bias generators. Observe that
by the inductive hypothesis, D′ is pseudorandom against degree-(d − 1) polynomials with
error (ε/10)4 < min(ε4/400, ε3/10). Let p(x) be any degree-d polynomial. Consider first
the case that all the Fourier coefficients of p are at most ε2/10. By Lemma 7.2, we know
that the distribution of x + y, where x and y are chosen independently according to D′, is
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pseudorandom against p with error ε. Alternatively, consider the case that there exists some
Fourier coefficient of p of absolute value at least ε2/10. By Lemma 7.3, D′ is pseudorandom
against p, and by Observation 7.1 so is the distribution of x + y, where x and y are chosen
independently according to D′.

The remainder of the paper is organized as follows: Lemma 7.2 is proven in Observa-
tion 7.4 and Lemma 7.3 in Section 7.5.

7.4 Case I: No large Fourier coefficients

In this section we prove Lemma 7.2. We assume throughout this section that all the Fourier
coefficients of e(p(x)) are small, i.e., |p̂α| < ε2/10 for all α ∈ Fn.

We start by defining a derivation polynomial.

Definition 7.6. Let p(x) : Fn → F be a polynomial. We define its derivation polynomial
∆p : (Fn)4 → F as

∆p(x′,x′′,y′,y′′) = p(x′ + y′)− p(x′′ + y′)− p(x′ + y′′) + p(x′′ + y′′) .

The following lemma is crucial to our analysis, and is a variation of a lemma proven
in [BV07]. We relate the distribution of evaluating p on the sum of two independent inputs
to that of ∆p.

Lemma 7.4. Let p : Fn → F. Let D be a distribution over Fn. Let x, y be independently
chosen from D, then

|Ex,y∈D[e(p(x + y))]|4 ≤ Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))] ,

where x′,x′′,y′,y′′ are also independent.

Proof. The proof is essentially applying the Cauchy-Schwarz inequality twice. We start by
showing

|Ex,y∈D[e(p(x + y))]|2 ≤ Ex,y′,y′′∈D[e(p(x + y′)− p(x + y′′))] ,

and then continue to show

|Ex,y∈D[e(p(x + y))]|4 ≤ Ex′,x′′,y′,y′′∈D[e(p(x′ + y′)− p(x′′ + y′)− p(x′ + y′′) + p(x′′ + y′′))] ,

which is what we want to prove, by the definition of ∆p. We prove the first part by applying
the Cauchy-Schwarz inequality

|Ex,y∈D[e(p(x + y))]|2 ≤ Ex∈D |Ey∈D[e(p(x + y))]|2 =

Ex∈D

[
Ey′∈D[e(p(x + y′))] Ey′′∈D[e(p(x + y′′))]

]
=

Ex,y′,y′′∈D[e(p(x + y′)− p(x + y′′))] .
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We prove the second part by applying the Cauchy-Schwarz inequality again

|Ex,y∈D[e(p(x + y))]|4 ≤
|Ex,y′,y′′∈D[e(p(x + y′)− p(x + y′′))]|2 ≤
Ey′,y′′∈D |Ex∈D[e(p(x + y′)− p(x + y′′))]|2 =

Ex′,x′′,y′,y′′∈D [e(p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′))] .

In particular the following corollary follows:

Corollary 7.1. Ex′,x′′,y′,y′′∈D [e(∆p(x′,x′′,y′,y′′))] ≥ 0 .

We analyze the expression Ex′,x′′,y′,y′′∈D [e(∆p(x′,x′′,y′,y′′))], in two cases: when D = U
is the uniform distribution and when D is a PRG for degree-(d− 1) polynomials. We show
that in both cases it is at most ε/2. Combining this with Lemma 7.4 yields the required
result. We start our analysis in the uniform case.

We begin by showing the (well-known) connection between the average value of ∆p and
the Fourier coefficients of p, regarding ∆p as an affinity-test for p. A similar analysis, carried
in more depth, can be found in [BCH+95].

Lemma 7.5.

Ex′,x′′,y′,y′′∈U [e(p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′))] =
∑
α∈Fn
|p̂α|4 .

Proof. We can write e(p(x)) in the Fourier basis as

e(p(x)) =
∑
α∈Fn

p̂αe(〈α,x〉) .

Notice that
e(−p(x)) = e(p(x)) =

∑
α∈Fn

p̂αe(−〈α,x〉) .

We now expand all four terms of p in

e(p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′)) .

This is equal to∑
α1,α2,α3,α4∈Fn

p̂α1e(〈α1,x
′ + y′〉) p̂α2e(−〈α2,x

′ + y′′〉) p̂α3e(−〈α3,x
′′ + y′〉) p̂α4e(〈α4,x

′′ + y′′〉) .

Remember that we are interested in the expected value over uniform x′,x′′,y′,y′′ ∈ Fn, i.e.,
in

Ex′,x′′,y′,y′′∈U [e(p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′))] .
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We now use the Fourier expansion and group elements by their related values. After
doing so, the above expectation is equal to∑

α1,α2,α3,α4∈Fn
p̂α1 p̂α2 p̂α3 p̂α4Ex′∈U [e(〈α1 − α2,x

′〉)]Ex′′∈U [e(〈α4 − α3,x
′′〉)]

Ey′∈U [e(〈α1 − α3,y
′〉)]Ey′′∈U [e(〈α4 − α2,y

′′〉)] .

The term inside the sum for α1, . . . , α4 is zero unless α1 = α2 = α3 = α4 = α, and in that
case its contribution is |p̂α|4. This finishes the proof of the lemma.

We now use this relation between ∆p and the Fourier coefficients of p to show that the
expected value of ∆p is small.

Lemma 7.6. |Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < ε4/100.

Proof. We use Lemma 7.5. We have

Ex′,x′′,y′,y′′∈U [e(p(x′ + y′)− p(x′ + y′′)− p(x′′ + y′) + p(x′′ + y′′))] =
∑
α∈Fn
|p̂α|4 .

We now combine the fact that
∑

α∈Fn |p̂α|2 = 1 and our assumption that |p̂α| < ε2/10 for all
α ∈ Fn, to yield the required bound.

Combining Lemmas 7.4 and 7.6 we get that

|Ex,y∈U [e(p(x + y))]| <
(
ε4

100

)1/4

<
ε

2
.

We now move on to handle the pseudorandom case. We start with the following obser-
vation:

Observation 7.2. The polynomial ∆p(x′,x′′,y′,y′′) has total degree-d, but has no degree-d
terms which have variables from only one of x′, x′′, y′, y′′. Therefore, the total degree of
variables from x′ in each term is at most d− 1. The same is true for also x′′, y′ and y′′.

We now show that if D is a distribution that is pseudorandom against degree-(d − 1)
polynomials, then it is also pseudorandom against ∆p. We use a hybrid argument similar to
the one in [BV07].

Lemma 7.7. Let D be a distribution that is pseudorandom against degree-(d−1) polynomials
with error δ. Then

|Ex′,x′′,y′,y′′∈D [e(∆p(x′,x′′,y′,y′′))]− Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < 4δ .

Proof. We change the inputs x′,x′′,y′ and y′′ from U to D, one at a time. We prove that
the expected value of e(∆p) changes by at most δ in each step, accumulating to a total of
at most 4δ. Formally, let Hk (k = 0, . . . , 4) be the joint distribution of x′, x′′, y′, y′′, when
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the first k are taken from D and the last 4 − k are taken from U . For example, H1 is the
distribution where x′ ∈ D and x′′, y′, y′′ ∈ U , where x′, x′′, y′, y′′ are independent.

We prove that the distance between e(∆p) under Hk−1 and Hk is at most δ, for all
k = 1, 2, 3, 4. For the sake of clarity, we focus on the proof for k = 1. The proof for the other
three cases is essentially identical.

For k = 1, we want to show that

|Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]− Ex′∈D,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < δ .

The joint distribution of x′′,y′,y′′ is identical in both terms, so we have

|Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]− Ex′∈D,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| ≤
Ex′′,y′,y′′∈U |Ex′∈U [e(∆p(x′,x′′,y′,y′′))]− Ex′∈D [e(∆p(x′,x′′,y′,y′′))]| .

Now, for any fixing of values for x′′ = a, y′ = b, y′′ = c, ∆p(x′, a, b, c) is a polynomial
just in x′. Observation 7.2 tells us that it is a polynomial of degree at most d− 1. Since D
is pseudorandom against degree-(d − 1) polynomials, the inequality follows for every fixing
of x′′, y′, y′′. Hence, it also follows for the expected value.

If we take D to be a PRG against degree-(d − 1) polynomials with error ε4/400 and
combine this with Lemmas 7.4 and 7.6, we get that

|Ex′,x′′,y′,y′′∈D [e(∆p(x′,x′′,y′,y′′))]| < ε4

100
+ 4

ε4

400
=
ε4

50
,

and so using Lemma 7.4 we get that

|Ex,y∈D[e(p(x + y))]| <
(
ε4

50

)1/4

<
ε

2
.

This finishes the proof of Lemma 7.2.

7.5 Case II: Some large Fourier coefficient exists

In this section we prove Lemma 7.3. We assume throughout this section that p has some
large Fourier coefficient. To be precise, there exists some α ∈ Fn such that

|p̂α| ≥
ε2

10
.

Let `(x) be the corresponding linear function, i.e., `(x) = 〈x, α〉. Define

η = p̂α = Ex∈U [e(`(x)− p(x))] .

η is a measure for the approximation of p(x) by `(x). By our assumption on p̂α, we know
that |η| ≥ ε2/10. For any constant a ∈ Fn define the polynomial

qa(x) = p(x)− p(x + a) + `(x + a) .
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Notice that qa(x) has degree at most d− 1, because `(x + a) is linear (and so of degree less
than d), and the degree-d terms in p(x) and p(x + a) cancel out.

We can think of qa(x) as using `(x), which approximates p(x) non-uniformly, and the
derivative of p(x) in a random direction a, to build a random degree-(d − 1) polynomial
which approximates p(x) uniformly. In order to show this formally, we define

νx(a) =
1

η
e(qa(x)) ,

and prove that νx(a), taken on a random a ∈ Fn value, is exactly e(p(x)).

Lemma 7.8. For every x ∈ Fn, Ea∈U [νx(a)] = e(p(x)).

Proof. Ea∈U [νx(a)] = 1
η
e(p(x))Ea∈U [e(`(x + a)− p(x + a))] = e(p(x)).

Effectively, we have shown that p(x) can be approximated uniformly by a (random)
degree-(d − 1) polynomial qa(x). We can now use this to show that a distribution that is
pseudorandom against degree-(d− 1) polynomials is also pseudorandom against p. First, we
prove the following lemma:

Lemma 7.9. Let D be a distribution that is pseudorandom against degree-(d−1) polynomials
with error δ. For every a ∈ Fn

|Ex∈D[νx(a)]− Ex∈U [νx(a)]| < δ

|η|
.

Proof. We have

|Ex∈D[νx(a)]− Ex∈U [νx(a)]| = 1

|η|
|Ex∈D[e(qa(x))]− Ex∈U [e(qa(x))]| < δ

|η|
,

where we use the fact that qa is a polynomial of degree at most d−1 and soD is pseudorandom
against qa with error δ.

We now conclude by proving Lemma 7.3.

Proof of Lemma 7.3. Let D be a distribution that is pseudorandom against degree-(d − 1)
polynomials with error ε3/10. Then

|Ex∈D[e(p(x))]− Ex∈U [e(p(x))]| = |Ex∈DEa∈U [νx(a)]− Ex∈UEa∈U [νx(a)]|

≤ Ea∈U |Ex∈D[νx(a)]− Ex∈U [νx(a)]| < ε3/10

|η|
≤ ε .
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Chapter 8

Explicit lower bound for fooling
polynomials by the sum of small-bias
generators

Recently, Viola (CCC’08) showed that the sum of d small-bias distributions fools degree-d
polynomial tests; that is, every polynomial expression of degree at most d in the bits of the
sum has distribution very close to that induced by this expression evaluated on uniformly
selected random bits. We show that this is tight by showing an explicit construction of a
small-bias generator (with exponentially small bias), and an explicit degree d+1 polynomial,
that is distributed almost uniformly on random input, but always takes the value zero when
evaluated on the sum of d independent copies of this generator.

Joint work with Yoaz Tzur.

8.1 Introduction

Small-bias distributions, first defined by Naor and Naor [NN93], are distributions over {0, 1}n
which are designed to fool all linear tests; any non-zero linear functional in the bits is dis-
tributed almost uniformly. A natural generalization are distributions that fool higher degree
polynomials. A result of Viola [Vio08], improving over previous works of Bogdanov and
Viola [BV07] and Lovett [Lov08], yields a general method for obtaining such distributions
using any small-bias distribution. In order to construct a distribution that fools polynomi-
als of degree at most d, take the bitwise sum of d independent samples of any small-bias
distribution.

This result has been shown in [BV07] to be essentially tight with respect to the number of
copies needed; using a counting argument, they show that for a fixed bias, any generator with
output length ` that fools all degree d+ 1 polynomials must have seed length (d+ 1) · log `−
O(1). Thus, for every generator with shorter seed, there exists a polynomial expression of
degree at most d+ 1 that distinguishes a random output of the generator from truly random
bits. For a suitable choice of ε = o(1), the total length of d independent seeds for a standard
construction of an ε-biased generator is still small enough, giving that in general the sum of
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d small-bias generators does not fool polynomials of degree d+ 1.
Alon et al. [ABEK08] showed almost tight lower bounds for the size of the sample space

required to fool all degree d polynomials with given error ε. Their bounds relate to the size of
a general sample space, and not to the specific construction we are interested in, the bitwise
sum of d independent samples of a small-bias distribution.

All the previous bounds metinoned are non-explicit, in the sense they prove the existence
of a degree d polynomial which is not fooled by a small enough sample space. The main goal
of this work is to prove such lower bounds explicitly.

Our main result is an explicit construction of a small-bias generator, and an explicit
polynomial of degree d+1, such that this polynomial always evaluates to zero on inputs which
are sums of d copies of the small-bias generator, and is almost uniform when evaluated over
uniform inputs. Furthermore, our small-bias generator construction allows for exponentially
small bias, whereas the proof of [BV07] allows only polynomially small bias.

Theorem 8.1. For every n, d ∈ N and ` ≥ 2d + 1, there exists an explicit small-bias
generator F : {0, 1}2n → {0, 1}`n with bias ε ≤ `/2n and with the following property. Let
G : ({0, 1}2n)d → {0, 1}`n be the sum of d independent samples of F , that is

Gi(s) = Gi(s1, . . . , sd) = Fi(s1)⊕ . . .⊕ Fi(sn) (1 ≤ i ≤ `n).

Then there exists an explicit polynomial p(x1, . . . , x`n) of degree d+ 1 over GF (2) such that

• The polynomial p evaluates to zero on any output of G,

p(G1(s), . . . , G`n(s)) ≡ 0 ∀s ∈ ({0, 1}2n)d

• The polynomial p is almost uniform on uniform inputs,

1

2
− d

2n
≤ Pr

x∈{0,1}`n
[p(x1, . . . , x`n) = 0] ≤ 1

2
+

d

2n

The paper is organized as follows. We give some required definitions in Section 8.2.
We present the construction of the small-bias generator and the distinguishing polynomial
in Section 8.3. Our results extend naturally to larger prime fields. We discuss this in
Section 8.4.

8.2 Preliminaries

8.2.1 Definitions

Let GF (q) denote the finite field of size q. We begin with the definition of a small-bias
distribution.

Definition 8.1 (Small-bias distribution). For ` ∈ N, ε > 0, a distribution D over {0, 1}` is
called ε-biased if for every nonzero α ∈ {0, 1}`,∣∣∣∣ Pr

x∼D
[〈α〉x = 0]− 1

2

∣∣∣∣ ≤ ε,

where 〈α〉x denotes the inner product
∑

i αixi (over GF (2)).
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The generalization to higher degree polynomials was first studied by [LVW93] (in fact,
they considered the larger class of depth-2 boolean circuits), and further studied in [Bog05]
(although there, only super-constant field sizes were considered).

Definition 8.2 (Fooling polynomials). For d, ` ∈ N, ε > 0, a distribution D over {0, 1}`
is said to ε-fool degree d polynomials if for every `-variate polynomial p over GF (2) of total
degree at most d, ∣∣∣ Pr

x∼D
[p(x) = 0]− Pr

x∼U
[p(x) = 0]

∣∣∣ ≤ ε,

where U denotes the uniform distribution over {0, 1}`.
We also view distributions as the outputs of pseudorandom generators.

Definition 8.3 (Small-bias generator). For k, ` ∈ N, ε > 0, a mapping G : {0, 1}k → {0, 1}`
is called an ε-biased generator of stretch `(k), if the distribution induced by G(s) for s selected
uniformly in {0, 1}k is ε-biased.

Definition 8.4 (Pseudorandom generator for polynomials). For d, k, ` ∈ N, ε > 0, a map-
ping G : {0, 1}k → {0, 1}` is said to ε-fool degree d polynomials if the distribution induced by
G(s) for s selected uniformly in {0, 1}k, ε-fools degree d polynomials. Again, we say that G
has stretch `(k).

Remark. When discussing pseudorandom generators, it is common to also consider the
complexity of the generator itself (as opposed to the complexity of potential distinguishers).
This is quite secondary to the current work.

Despite our final interest in distributions over bits, we will also use generators over
the larger field GF (2n) (see Subsections 8.2.2 and 8.3.3 for details). We first define the
appropriate measure of distance between distributions.

Definition 8.5 (Statistical distance). For ε > 0, two distributions X, Y are said to be ε-close
(in statistical distance) if for every event E,∣∣∣Pr

X
[E]− Pr

Y
[E]
∣∣∣ ≤ ε.

Conversely, if there exists an event such that |PrX [E]− PrY [E]| ≥ ε, then X and Y are said
to be ε-far (in statistical distance).

We now define generators over GF (2n).

Definition 8.6 (GF (2n)-linear tests resilience). For k, ` ∈ N, ε > 0, a mapping G :
GF (2n)k → GF (2n)` is said to ε-fool GF (2n)-linear tests, if for every vector α ∈ GF (2n)`,
and for s chosen uniformly in GF (2n)k, the distribution of the expression

∑`
i=1 αi · Gi(s),

computed in the arithmetic of GF (2n), is ε-close to the uniform distribution over GF (2n).

Definition 8.7 (GF (2n)-polynomial tests resilience). For d, k, ` ∈ N, ε > 0, a mapping G :
GF (2n)k → GF (2n)` is said to ε-fool GF (2n)-polynomials of degree d if for every polynomial
p ∈ GF (2n)[x1, . . . , x`], the following two distributions are ε-close (in statistical distance):

• p(G(s)) for s chosen uniformly from GF (2n)k.

• p(x) for x chosen uniformly from GF (2n)`.
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8.2.2 Representation of GF (2n)

We identify n-bit vectors in {0, 1}n with elements of GF (2n) in a standard representation
scheme. We will explicitly specify, for each variable, whether it is seen as an element of the
field GF (2n) or of the vector-space {0, 1}n = GF (2)n. We will use the linearity properties
of this representation scheme.

Fact 8.1 (linearity of the standard representation). The following three properties hold for
the standard representation scheme of GF (2n) as vectors in {0, 1}n.

• Addition in the field GF (2n) corresponds to addition of the respective representations
in the vector space {0, 1}n.

• Multiplication of elements in the field GF (2n) corresponds to a bilinear mapping of
the respective representations in the vector space {0, 1}n. That is, for two vectors
x, y ∈ {0, 1}n, every bit of the vector representing the multiplication of the two GF (2n)-
elements represented by x and y can be written as a GF (2)-bilinear form in x and y.

• Let Ψ : GF (2n) → {0, 1} be any nonzero linear mapping. Any linear mapping Φ :
GF (2n)→ {0, 1} can be written uniquely as Φ(x) = Ψ(a ·x) for some a ∈ GF (2n) (the
multiplication a · x is done using the arithmetic of GF (2n)).

Fact 8.1 follows from the representation of GF (2n) as the quotient GF (2)[x]/ 〈c(x)〉 for
〈c(x)〉 being the ideal generated by some irreducible polynomial c(x) of degree n. For details,
see any standard algebra textbook (e.g. [BM65]) or Lemma 15 in [Tzu].

8.3 The construction

We give an explicit small-bias generator and show that the sum of d independent copies of
this generator does not fool an explicit polynomial of degree d+ 1.

While we are interested in distributions and polynomial tests over bits, we will first con-
struct a distribution and polynomial over GF (2n). Using the linearity of the representation,
we will then obtain a distribution and a polynomial over bits.

8.3.1 The generator

We use the following geometric generator, considered in [Tzu], which is related to a well
known construction of a small-bias generator [AGHP90].

Construction 8.1 (The geometric generator). For n, ` ∈ N, define a mapping F : GF (2n)×
GF (2n) → GF (2n)` by letting the i-th output element for input elements a, b be Fi(a, b) =
a · bi, for i = 0, ..., `− 1 (using the arithmetic of GF (2n)).

The geometric generator fools linear tests over GF (2n).

Proposition 8.1. The geometric generator `−1
2n

-fools GF (2n)-linear tests.

We sketch the proof below. For a complete proof, see Proposition 7 in [Tzu].
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Proof. Observe that every fixed nonzero GF (2n)-linear combination ᾱ in the output of the
geometric generator F (a, b) is equal to a · q(b) where q is a nonzero polynomial (determined
by ᾱ) of degree at most ` − 1 over GF (2n). If b is not one of the (at most) ` − 1 roots of
q, then a · q(b) is distributed uniformly when a is selected uniformly. Thus the expression is
distributed `−1

2n
-close to uniform over GF (2n).

For our purposes, any ` ≥ 2d + 1 would suffice. To get a final bias of ε over bits (see
subsection 8.3.3), we choose n = log `+ log 1

ε
(and note that ε can be 2−Ω(`) for n = Ω(`)).

The element-wise sum of d instances of F gives the generator G : GF (2n)2d → GF (2n)`

defined as Gi(a1, b1, . . . , ad, bd) =
∑d

j=1 ajbj
i, using the arithmetic of GF (2n).

8.3.2 The distinguishing polynomial

We now present a polynomial D over GF (2n) of the first 2d+1 output elements of G, denoted
g0, ..., g2d, that has degree d+ 1, and show that while the output of this polynomial is close
to uniform on uniform input, it always takes the value zero when applied to an output of G.

The polynomial D(g0, . . . , g2d) will be defined as the determinant of the following (d +
1)× (d+ 1) Hankel matrix:

A(d)
g =


g0 g1 . . . gd
g1 g2 . . . gd+1
...

...
...

gd gd+1 . . . g2d


(that is, the (i, k)-th entry of A

(d)
g is gi+k).

Indeed, this is a polynomial over GF (2n) of degree d+ 1 in the output blocks of G. We
first claim that it is close to uniform when applied to uniform input:

Lemma 8.1. Let M be a random m×m Hankel matrix over a finite field F (i.e., the Hankel
matrix defined by Mi,k = yi+k for y0, . . . , y2m−2 chosen uniformly at random from F). Then,
the distribution of the determinant of M is m−1

|F| -close to uniform (in statistical distance).

Proof. We proceed by induction on m. For m = 1, det(M) is exactly the only element of M ,
chosen uniformly from F. Now fix m > 1, and let x be the first (top-left) element of M , and
ȳ = (y2, . . . , y2m−2) denote the remaining elements (on the top row and rightmost column).
Denote the submatrix resulting from removing the first row and column by M ′, and note that
it only contains the elements y2, . . . , y2m−2. We develop the determinant ofM by the first row,
and write det(M) = x·det(M ′)+f(ȳ), for some function f of ȳ. By the induction hypothesis,
det(M ′) is distributed m−2

|F| -close to uniform, so Pr[det(M ′) = 0] ≤ 1
|F| + m−2

|F| = m−1
|F| . For

any fixed nonzero value of det(M ′) 6= 0 and for any fixed value of ȳ, the function det(M)
is a (nonconstant) affine function of the uniformly chosen x, implying that, conditioned on
det(M ′) 6= 0, the determinant of M is distributed uniformly in F.

Corollary 8.1. For g0, . . . , g2d chosen uniformly at random from GF (2n), the distribution
of D(g0, . . . , g2d) is d

2n
-close to uniform (in statistical distance).
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On the other hand, the polynomial D is identically zero on the output of G.

Proposition 8.2. For every seed s̄ = (a1, b1, . . . , ad, bd) ∈ GF (2n)2d, the expression D(G(s̄))
evaluates to zero.

Proof. We will show that the matrix A
(d)
g is singular for every seed, and thus the polynomial

D(g0, . . . , g2d) = det(A
(d)
g ) will always take the value zero when evaluated on an output

of G. To show that A
(d)
g is singular for any seed, we show that its columns are always

linearly dependent. More specifically, we show that for any b1, . . . , bd ∈ GF (2n) there exist
λ0, . . . , λd ∈ GF (2n), not all zero, such that for all 0 ≤ k ≤ d, it holds that

∑d
i=0 λigi+k = 0.

Letting c̄i = (gi, . . . , gi+d)
T denote the i-th column of A

(d)
g , this means that

∑d
i=0 λic̄i is the

zero vector in GF (2n)d+1.
Consider the polynomial Λ(x) =

∏d
j=1(x − bj), the degree d polynomial with roots

b1, . . . bd, and set each λi to be the coefficient of xi in Λ(x). Note that always λd = 1.
Then, using the definition of G (i.e., gi =

∑
j ajbj

i), we get for every 0 ≤ k ≤ `− d:

d∑
i=0

λigi+k =
d∑
i=0

λi

d∑
j=1

ajbj
i+k

=
d∑
j=1

ajbj
k ·

d∑
i=0

λibj
i

=
d∑
j=1

ajbj
k · Λ(bj),

which is 0 as the bj’s are all roots of Λ(x).

We have thus obtained, using the event D = 0 in Definition 8.5, that

Theorem 8.2 (D distinguishes G from random). For D the determinant of A
(d)
g , the dis-

tributions D(U`) and D(G(U2d)) are (1− d+1
2n

)-far (in statistical distance), where Uk denotes
the uniform distribution over GF (2n)k.

8.3.3 A distribution over bits

Let F ′ : {0, 1}n×{0, 1}n → {0, 1}`·n decode the 2n input bits to two elements a, b ∈ GF (2n),
and output the concatenation of the representations of the elements F1(a, b) . . . F`(a, b), where
Fi(a, b) ∈ {0, 1}n is the i-th output block of the geometric generator of Construction 8.1.
We first argue that F ′ is a small-bias generator.

Claim 8.1. F ′ is an `−1
2n

-biased generator.

We sketch the proof below. For a complete proof we refer to Corollary 8 in [Tzu].

Proof. Let Φ : {0, 1}`n → {0, 1} be a nonzero linear combination. Identify x ∈ {0, 1}`n as
(x1, . . . , x`) ∈ GF (2n)`. We can decompose Φ as Φ(x) = Φ1(x1) + . . . + Φ`(x`) where each

122



www.manaraa.com

Φi : GF (2n)→ {0, 1} is a linear mapping. Let Ψ : GF (2n)→ {0, 1} be some nonzero linear
combination. Using Fact 8.1 we can write each Φi as Φi(xi) = Ψ(aixi) for some ai ∈ GF (2n).
By linearity we get that Φ(x) = Ψ(a1x1 + . . .+ a`x`). Since Φ is nonzero we get that not all
a1, . . . , a` are zero. Applying Φ to F ′ we get that for any s ∈ {0, 1}2n

Φ(F ′(s)) = Ψ(a1F1(s) + . . .+ a`F`(s)).

Using Proposition 8.1 we know that the distribution of a1F1(s) + . . .+a`F`(s) is `−1
2n

-close to
uniform. Thus, since the output of Ψ is uniform in {0, 1} for a uniform input, we get that∣∣∣∣ Pr

s∈{0,1}2n
[Φ(F ′(s)) = 0]− 1

2

∣∣∣∣ ≤ `− 1

2n
.

Analogously, let G′ : {0, 1}2d·n → {0, 1}`·n decode its 2dn input bits as 2d elements
a1, b1, . . . , ad, bd ∈ GF (2n), and output the concatenation of the bit strings representing the
output elements of G(a1, b1, . . . , ad, bd).

Viola’s result [Vio08] implies that G′ fools polynomials of degree d; we will show an
explicit polynomial of degree d+ 1 that distinguishes a random output of G′ from a random
element of {0, 1}`·n. Having shown that the polynomial D, over GF (2n), acts significantly
differently on an output of G than on random input, we will derive the explicit polynomial
in the output bits of G′.

Lemma 8.2. Fix an `-variate polynomial D : GF (2n)` → GF (2n) of degree d, and define
the mapping D′ : {0, 1}`·n → {0, 1}n to treat its input as the representation of ` elements
x1, . . . , x` ∈ GF (2n), and output the vector representing D(x1, . . . , x`). Then, each of the n
output bits of D′ is a polynomial of degree at most d over GF (2) in the ` · n input bits.

Proof. We will show the claim for a polynomial consisting of a single monomial; the general
claim follows from the fact that addition in the field GF (2n) is exactly bitwise addition in
the vector space {0, 1}n (Fact 8.1). We proceed by induction on the degree d. For d = 0 the
claim is immediate since D is constant. Now fix d > 0, and assume without loss of generality
that D(x1, . . . , x`) = x1 · . . . ·xd. By Fact 8.1, the representation of D(x1, . . . , x`) is a bilinear
expression in the bits of the two vectors x1 and y1, where y1 is the vector representing the
multiplication x2 · . . . · xd. By the induction hypothesis, every bit in y1 is a polynomial of
degree at most d− 1 in the bits of x2, . . . xd, so each bit of a bilinear form in x1 and y1 is a
polynomial of degree at most d in the bits of x1, . . . , xd.

Finally, by combining Theorem 8.2 with Lemma 8.2, letting D′ be the binary version of
D (as in Lemma 8.2), and setting D′1 to the first bit (say) of D′, we obtain our main result.

Theorem 8.3 (D′1 distinguishes G′ from random). The polynomial D′1 : {0, 1}`·n → {0, 1}
has degree at most d+ 1 and satisfies∣∣∣∣ Pr

s∈{0,1}2d·n
[D′1(G′(s)) = 0]− Pr

x∈{0,1}`·n
[D′1(x) = 0]

∣∣∣∣ ≥ 1

2
− d

2n
.
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Proof. By Lemma 8.2, D′1 indeed has degree at most d+ 1.
By Corollary 8.1, the distribution of D(x) is d

2n
-close to uniform over GF (2n) when x

is chosen uniformly from GF (2n)`+1, and thus by definition the distribution of D′(x) is d
2n

-
close to uniform over {0, 1}n, where x is chosen uniformly from {0, 1}(`+1)·n. Specifically,
considering the event “first bit is zero” in Definition 8.5, we have

Pr
x∈{0,1}(`+1)·n

[D′1(x) = 0] ≤ 1

2
+

d

2n
.

On the other hand, by Proposition 8.2, D(G(s)) = 0 for every s ∈ GF (2n)2d, giving that
D′(G′(s)) = 0n for every s ∈ {0, 1}2d·n, and specifically

Pr
s∈{0,1}2d·n

[D′1(G′(s)) = 0] = 1.

The theorem follows.

8.4 Larger prime fields

Our construction of a small-bias generator and distinguishing polynomial generalize naturally
to general prime finite fields, as does the result of [Vio08]. The following is the analogue of
Definition 8.1 (see, e.g., [Eve91] or [GW97]).

Definition 8.8. For ` ∈ N, ε > 0 and a prime q, a distribution X over GF (q)` is called
ε-biased if for every nonzero α ∈ GF (q)`:∣∣Ex∼X [e〈x〉α·2πi/q]

∣∣ ≤ ε,

where 〈α〉x denotes the inner product
∑

i αi ·xi over GF (q), and the multiplication by 2πi/q
is then done over the complex field C.

Standard arguments give that in this case,∣∣∣∣ Pr
x∼D

[〈x〉α = 0]− 1

q

∣∣∣∣ ≤√q − 1 · ε/2.

(see, e.g., Appendix B in [BV07]).
Generalizing the generator and the distinguishing polynomial in the obvious way, we get

the following generalization of Theorem 8.1 to general prime finite fields.

Theorem 8.4. Let GF (q) be a prime finite field. For every n, d ∈ N and ` ≥ 2d + 1, there
exists an explicit small-bias generator F : GF (q)2n → GF (q)`n with bias ε ≤ `/qn and with
the following property. Let G : (GF (q)2n)d → GF (q)`n be the sum of d independent samples
of F , that is

Gi(s) = Gi(s1, . . . , sd) = Fi(s1) + . . .+ Fi(sn) (mod q) (1 ≤ i ≤ `n).

Then there exists an explicit polynomial p(x1, . . . , x`n) of degree d+ 1 over GF (q) such that
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• The polynomial p evaluates to zero on any output of G,

p(G1(s), . . . , G`n(s)) ≡ 0 ∀s ∈ (GF (q)2n)d

• The distribution of p, when applied on uniform inputs, is d
qn

-close to the uniform
distribution over Fq.
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Chapter 9

Pseudorandom bit-generators for
modular sums

We consider the following problem: for given n,M , produce a sequence X1, X2, . . . , Xn of
bits that fools every linear test modulo M . We present two constructions of generators for
such sequences. For every constant prime power M , the first construction has seed length
OM(log(n/ε)), which is optimal up to the hidden constant. (A similar construction was
independently discovered by Meka and Zuckerman [MZ09]). The second construction works
for every M,n, and has seed length O(log n+ log(M/ε) log(M log(1/ε))).

The problem we study is a generalization of the problem of constructing small bias
distributions [NN93], which are solutions to the M = 2 case. We note that even for the case
M = 3 the best previously known constructions were generators fooling general bounded-
space computations, and required O(log2 n) seed length.

For our first construction, we show how to employ recently constructed generators for
sequences of elements of ZM that fool small-degree polynomials (modulo M). The most
interesting technical component of our second construction is a variant of the derandom-
ized graph squaring operation of [RV05]. Our generalization handles a product of two
distinct graphs with distinct bounds on their expansion. This is then used to produce
pseudorandom-walks where each step is taken on a different regular directed graph (rather
than pseudorandom walks on a single regular directed graph as in [RTV06, RV05]).

Joint work with Omer Reignold, Luca Trevisan and Salil Vadhan.

9.1 Introduction

Pseudorandomness is the theory of generating objects that “look random” despite being
constructed using little or no randomness. A primary application of pseudorandomness
is to address the question: Are randomized algorithms more powerful than deterministic
ones? That is, how does randomization trade off with other computational resources? Can
every randomized algorithm be converted into a deterministic one with only a polynomial
slowdown (i.e., does BPP = P) or with only a constant-factor increase in space (i.e., does
RL = L)? The study of both these questions has relied on pseudorandom bit generators that
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fool algorithms of limited computational powers. In particular, generators that fool space-
bounded algorithms [AKS, BNS, Nis92, INW94] were highly instrumental in the study of
the RL vs. L problem (e.g. used in the best known derandomization of RL [SZ99]).

While the currently available space-bounded generators are extremely powerful tools,
their seed length is still suboptimal. For example, if we want to fool a log n-space algorithm
then known generators require log2 n truly random bits (the seed) in order to generate
up to polynomially many pseudorandom bits. On the other hand, for several interesting
special cases we do know generators with almost optimal seed length. The special case
which serves as a motivation for our work is that of small-biased generators [NN93]. These
generators produce n bits X1, X2, . . . , Xn that fool all linear tests modulo 2. In other words,
for each subset T of the bits, the sum Σi∈TXi mod 2 is uniformly distributed up to bias
ε. Explicit constructions of ε-biased generators are known with seed-length O(log(n/ε)),
which is optimal up to the hidden constant [NN93]. Even though linear tests may seem very
limited, ε-biased generators have turned out to be very versatile and useful derandomization
tools [NN93, MNN94, HPS93, Nao92, AM95, AR94, BSSVW03, BV07, Lov08, Vio08].

Given the several applications of distributions that fool linear tests modulo 2, it is nat-
ural to consider the question of fooling modular sums for larger moduli. It turns out that
the notion of small-biased generators can be generalized to larger fields. Such generators
produce a sequence X1, X2, . . . , Xn of elements in a field F that fool every linear test over F
[Kat89, AIK+90, RSW93, EGL+98, AM95].1 In this work, instead, we consider a different
generalization of ε-biased generators where we insist on bit-generators. Namely we would
like to generate a sequence X1, X2, . . . , Xn of bits that fool every linear test modulo a given
number M . For every sequence a1, a2, . . . , an of integers in ZM = {0, 1, . . . ,M − 1} we want
the sum

∑
i aiXi mod M to have almost the same distribution (up to statistical distance at

most ε) as in the case where the Xi’s are uniform and independent random bits. (Note that
this distribution may be far from the uniform distribution over ZM , particularly when only a
few ai’s are nonzero.) It turns out that even for M = 3 and even if we limit all the ai’s to be
either ones or zeros, the best generators that were known prior to this work are generators
that fool general space-bounded computations [Nis92, INW94], and required a seed of length
O(log2 n). Therefore, obtaining better pseudorandom bit generators that fool modular sums
may be considered a necessary step towards improved space-bounded generators. In addi-
tion, we consider this notion to be a natural generalization of that of a small-bias generator,
which is a central derandomization tool.

Our Results

We give two constructions of pseudorandom bit generators that fool modular sums. Similarly
to [MST06], each construction is actually comprised of two generators: one that fools sum-
mations

∑
i aiXi in which only relatively few coefficients ai are nonzero (the “low-weight”

case) and one that fools summations
∑

i aiXi in which many coefficients ai are nonzero (the

1More generally, an ε-bias space over a finite abelian group G is a distribution D on elements of G such
that for every nontrivial character χ : G→ C, |E[χ(D)]| ≤ ε. The aforementioned results correspond to the
special case G = Fn, using the fact that the characters of Fn are in one-to-one correspondence with linear
functions Fn → F.
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“high weight” case). The motivation is that fooling low-weight sums and fooling high-weight
sums are tasks of a different nature. In the high-weight case, if Ri are truly random bits, then
ΣiaiRi mod M is almost uniformly distributed in ZM (at least when M is prime). Thus,
in analyzing our generator, we just need to argue that ΣiaiXi mod M is close to uniform,
where X1, . . . , Xn is the output of the generator.

On the other hand, in the low-weight case the distribution may be far from uniform and
therefore we may need to imitate the behavior of a random sequence of bits more closely.

Thus, in each construction, we shall present two generators: one that is pseudorandom
against low-weight sums, and one that is pseudorandom against high-weight sums. We shall
then combine them by evaluating them on independently chosen seeds and XORing the two
resulting sequences.

Construction Based on Pseudorandom Generators for Polynomials

In our first construction, we handle the case of M = 3 and any other fixed prime modulus
M (in fact, our construction works also for any fixed prime power). For these cases, our seed
length is O(log(n/ε)) as in the case of ε-biased generators (but the hidden constant depends
exponentially on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal known gen-
erators that construct a small-bias distribution X1, . . . , Xn of field elements, while our goal
is to generate bits. A natural approach to construct a bit generator would be to sample
a sequence of field elements X1, . . . , Xn from a small-bias distribution, and output a bit-
sequence g(X1), . . . , g(Xn) for an appropriate function g : F → {0, 1}. Unfortunately the
pseudorandomness of g(X1), . . . , g(Xn) against F-linear tests does not seem to follow from
the small-bias property of X1, . . . , Xn. Indeed, when |F| is odd, then g cannot be balanced,
so at best we could hope is for g(X1), . . . , g(Xn) to be indistinguishable by linear tests from
a sequence of independent biased bits. But even this is not achievable in general, if we only
assume the pseudorandomness of X1, . . . , Xn against F-linear tests(as per the definition of
small-bias space).2

If, however, we start from a sequence of field elements X1, . . . , Xn that fools polynomials
over F, then we can indeed show that g(X1), . . . , g(Xn) is indistinguishable by linear tests
from independent biased bits. The reason is that g can be chosen to be itself a polynomial
(of degree d = Θ(|F|)), and thus any F-linear test distinguisher on g(X1), . . . , g(Xn) yields
a degree d distinguisher on X1, . . . , Xn. Since we still only have indistinguishability from
biased coins, we only apply this approach when the coefficient vector has sufficiently high
weight so that both biased and unbiased random bits will yield a sum that is almost uni-
formly distributed over |F|. Specifically, we need at least k non-zero coefficients ai, where
k = O(M2 log 1/ε). For fixed M , there are known constructions [BV07, Lov08, Vio08] of
pseudorandom generators that fool polynomials of degree d over F = ZM , M prime, and
which only require seed length OM,d(log n/ε).

2Let F = Z3, and g : Z3 → {0, 1} be any nonconstant function. Let a be the element of Z3 such that a is
the unique preimage of g(a). Let (X1, . . . , Xn) be uniformly distributed over all elements of Zn3 where the
number of a’s is divisible by 3. Then

∑
i g(Xi) mod 3 is constant, but it can be shown that (X1, . . . , Xn) is

a 2−Ω(n)-biased space.
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In order to fool low-weight sums, we observe that a bit generator X1, . . . , Xn which is ε-
almost k-wise independent fools, by definition, every sum

∑
i aiXi mod M of weight at most

k, and that such generators are known which require only seed length O(log n+ k+ log 1/ε).
A similar construction was independently discovered by Meka and Zuckerman [MZ09].

Construction Based on the INW Generator

In our second construction, we give a pseudorandom bit generator that fools sums modulo
any given M (not necessarily prime) with seed length O(log n + log(M/ε) log(M log(1/ε))).
In both the low-weight and high-weight cases, this generator relies on versions of the
Impagliazzo–Nisan–Wigderson [INW94] pseudorandom generator for space-bounded com-
putation. Of course, modular sums are a special case of space-bounded computations, and
thus we could directly apply the INW generator. But this would require seed length larger
than log2 n. We obtain better bounds by more indirect use of the INW generator inside our
construction.

The most interesting technical contribution underlying this construction is a new analysis
of the derandomized graph squaring operation of [RV05], which captures the effect of using
the INW generator to derandomize random walks on graphs. Here we study the analogue
of derandomized squaring for taking products of two distinct Cayley graphs over an abelian
group (namely ZM). The advantage of the new analysis is that it handles graphs that have
distinct bounds on their expansion, and works for bounding each eigenvalue separately. This
is then used to produce pseudorandom walks where each step is taken on a different abelian
Cayley graph (rather than pseudorandom walks on a single graph as in [RTV06, RV05]).

For the purpose of this informal discussion we will assume that M is prime. (The idea
for handling composite M ’s is to analyze each Fourier coefficient of the distribution of the
sum separately. We defer further details to Section 9.2.1.)

Low-Weight Case. Let us first consider the case where the number of non-zero ai’s is at
most M ′ ·log(1/ε), for M ′ = poly(M).3 As before, we could use an almost k-wise independent
distribution, but then our seed length would depend polynomially on M , while our goal is a
polylogarithmic dependency.

First, we use a hash function to split the index set [n] = {1, 2, . . . , n} into B = O(M ′)
disjoint subsets Tj such that with high probability (say, 1 − ε/10) over the splitting, each
set Tj contains at most k = log(1/ε) indices i such that ai 6= 0. We show that the selection
of the hash function that determines the splitting can be done using O(log n + (logM/ε) ·
log(M log 1/ε)) random bits.

Once we have this partition, it is sufficient to independently sample in each block from an
ε/B-almost k-wise independent distribution, which requires s = O(log n + k + log(B/ε)) =
O(log n + log(M/ε)) random bits per block. Then we argue that it is not necessary for the
sampling in different blocks to be independent, and instead they can be sampled using a
pseudorandom generator for space-bounded computation [Nis92, INW94]. (This relies on
the fact the computation

∑
i aiXi mod M can be performed in any order over the i’s, in

3In this preliminary version we did not try to optimize the various constants. In particular, in our analysis
M ′ = O(M24). We note that it can be made as small as O(M2+α) for any α > 0.
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particular the order suggested by
∑

j

∑
i∈Tj ai · Xi mod M .) Using the INW generator, we

can do all the sampling using O(s+logB · (log(B/ε)+logM)) = O(log n+logM · log(M/ε))
random bits.

High-Weight Case. We now discuss the generator that fools sums with more than M ′ ·
log 1/ε non-zero coefficients ai, for M ′ = poly(M). Here, we can think of the computation∑

i aiXi mod M as an n-step walk over ZM that starts at 0. Unlike standard walks, each
step is taken on a different graph (over the same set of vertices, namely ZM). Specifically,
step i is taken on the (directed) Cayley graph where every node v has two outgoing edges.
The first edge is labeled 0 and goes into v itself (i.e., this edge is a self loop). The second edge
is labeled 1 and goes into v+ai mod M . Following the walk along the labels X1, X2, . . . , Xn

arrives at the vertex
∑

i aiXi mod M . If the Xi’s are uniform (i.e., we are taking a random
walk) then the end vertex will be almost uniformly distributed (because the number of steps
is larger than M2 · log(1/ε)). What we are seeking is a pseudorandom walk that is generated
using much fewer truly random bits but still converges to the uniform distribution (possibly
slower, e.g. using M ′ · log(1/ε) steps).

Pseudorandom walk generators were constructed in [RTV06, RV05] for walks on a single
regular and connected graph. In our case, we are walking not on a single graph but rather on
a sequence of graphs, each of which is indeed regular. It turns out that the pseudorandom
generators of [RTV06, RV05] still work for a sequence of graphs rather than a single graph.
The more difficult aspect is that in our walk there is no uniform bound on the expansion
of the graphs. Indeed, the graphs that correspond to ai = 0 are not connected at all (they
consist solely of self loops). In our setting, where the graphs are directed Cayley graphs for
the abelian group ZM , we show how to generate pseudorandom walks on graphs with varying
bounds on expansion.

We do this by a generalization of the derandomized graph product of [RV05]. There, ex-
panders are used to generate two steps on a degree-D graph using less than 2 logD random
bits, yet the (spectral) expansion of the resulting graph is almost as good as the square of
the original graph. We analyze the analogous derandomization of two steps on two distinct
(abelian Cayley) graphs for which we may have distinct bounds on their expansion. More-
over, to handle composite M , we show that the expansion can be analyzed in each eigenspace
separately. (For example, for Z6 = Z2 × Z3, a sequence of even coefficients ai will yield a
random walk that does not mix in the Z2 component, but may mix in the Z3 component,
and our pseudorandom generator needs to preserve this property.)

To obtain our pseudorandom walk generator, we first randomly reorder the index set
[n] so that the nonzero coefficients are well-spread out, and then derandomize the walk
by a recursive application of our aforementioned derandomized product. As discussed in
[RV05], the resulting pseudorandom walk generator is the same as the Impagliazzo–Nisan–
Wigderson [INW94] generator for space-bounded computation, with a different setting of
parameters that enables a much smaller seed length than their analysis requires for general
space-bounded algorithms.
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Discussion

The natural open problem left by our work is to reduce the seed length further, ideally
to O(log(nM/ε)), which can be shown to be possible via a nonconstructive probabilistic
argument. For achieving such optimal parameters, the modular reduction is actually in-
significant — it is equivalent to construct generators such that for every bounded coefficient
vector (a1, . . . , an) ∈ Zn where each |ai| ≤ M ,

∑
i aiXi is statistically close to

∑
i aiRi

as distributions on Z, where (X1, . . . , Xn) is the output distribution of the generator, and
(R1, . . . , Rn) is the uniform distribution on {0, 1}n. 4 As a result, such generators would also
“fool” linear threshold functions (halfspaces) whose coefficients are polynomially bounded.
Pseudorandom generators and related objects for threshold functions (with no bound on the
coefficients) have recently been studied in [RS09, DGJ+09], with the latter achieving seed
length O((log n) · log2(1/ε)/ε2).

9.2 Definitions and Tools

We denote by Un the uniform distribution over {0, 1}n. We fix an integer M ≥ 2 for the rest
of the paper. We will be interested in constructing pseudorandom bit generators that fool
sums modulo M . We denote by ZM the set {0, 1, . . . ,M − 1} with arithmetic modulo M .
Due to space limitations, we defer many of the proofs to the full version of the paper.

Definition 9.1 (Statistical Distance). The statistical distance between two random variables
X, Y taking values in ZM is dist(X, Y ) = 1

2

∑M−1
i=0 |Pr[X = i]−Pr[Y = i]|. The variables X

and Y are said to be ε-close if their statistical distance is at most ε.

Definition 9.2 (pseudorandom distributions against modular sums). A random variable
X = (X1, . . . , Xn) taking values in {0, 1}n is ε-pseudorandom against sums modulo M if
for any a1, . . . , an ∈ ZM , the distribution of a1X1 + · · · + anXn modulo M , is ε-close (in
statistical distance) to the distribution a1R1 + · · · + anRn modulo M , where R1, . . . , Rn are
uniform and independent random bits.

Definition 9.3 (pseudorandom bit generators against modular sums). A function G :
{0, 1}r → {0, 1}n is an ε-pseudorandom bit generator against sums modulo M if the distri-
bution G(Ur) is ε-pseudorandom against sums modulo M .

Note that ε-biased generators is a special case of the definition of pseudorandom bit
generators against sums modulo M , for M = 2.

Our goal is to build generators that fool sums modulo M , where M can be either prime or
composite. Handling prime modulus is somewhat easier, and the approach in the following
section allows handling both cases simultaneously. We will show that it is enough to construct
pseudorandom generators which fools the bias of a sum modulo M , and under this approach,
there is no major difference between primes and composites.

4Indeed, given any coefficient vector (a1, . . . , an) ∈ Zn, where each |ai| ≤M , we can apply the generator
for modulus M ′ = M · n so that no modular reduction occurs.

131



www.manaraa.com

9.2.1 Small Bias Bit Generators

First we define the bias of a linear combination with coefficients a1, . . . , an ∈ ZM , given some
distribution of X = (X1, . . . , Xn) ∈ {0, 1}n:

Definition 9.4. Let X = (X1, . . . , Xn) be a distribution over {0, 1}n, and (a1, . . . , an) ∈ ZnM
a coefficient vector. We define the bias of a1, . . . , an according to X to be

biasX(a1, .., an) = E
[
ω
∑
aiXi
]

where ω = e2πi/M is a primitive M-th root of unity.

Notice that the bias can in general be a complex number, of absolute value at most 1.

Definition 9.5. We say a distribution X = (X1, . . . , Xn) over n bits is ε-bit-biased against
sums modulo M if for every coefficient vector (a1, . . . , an) ∈ ZnM ,

|biasX(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε

Let G : {0, 1}r → {0, 1}n be a bit generator. We shorthand biasG(a1, . . . , an) for
biasG(Ur)(a1, . . . , an).

Definition 9.6. G : {0, 1}r → {0, 1}n is an ε-bit-biased generator against sums modulo M
if the distribution G(Ur) is ε-bit-biased against sums modulo M . That is, for every coefficient
vector (a1, . . . , an),

|biasG(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε

The name “bit-biased” in the above definitions is meant to stress the difference from
standard ε-biased generators modulo M . Here we compare the bias under the generator to
the bias under uniformly selected bits (rather than uniformly selected elements in ZM).

We first reduce the problem of constructing pseudorandom modular generators to that
of constructing ε-bit-biased modular generators.

Lemma 9.1. Let X = (X1, . . . , Xn) be an ε-bit-biased distribution against sums modulo M .
Then X is (ε

√
M)-pseudorandom against sums modulo M .

From now on, we focus on constructing ε-bit-biased generators. We will need to differ-
entiate two types of linear combinations, based on the number on non-zero terms in them.

Definition 9.7 (Weight of a coefficient vector). The weight of a coefficient vector
(a1, . . . , an) ∈ ZnM is the number of non-zero coefficients ai.

We will construct two generators: one fooling linear combination with small weights, and
the other fooling linear combinations with large weight. Our final generator will be the be
the bitwise-XOR of the two, where each is chosen independently. The following lemma shows
this will result in an ε-bit-biased generator fooling all linear combinations.
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Lemma 9.2. Fix a weight threshold W . Let X ′ = (X ′1, . . . , X
′
n) be a distribution over {0, 1}n

such that for any vector coefficient a1, . . . , an of weight at most W ,

|biasX′(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε.

Let X ′′ = (X ′′1 , . . . , X
′′
n) be a distribution over {0, 1}n such that for any vector coefficient

a1, . . . , an of weight at least W ,

|biasX′(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε.

Let X be the bitwise-XOR of two independent copies of X ′ and X ′′, i.e.

X = X ′ ⊕X ′′ = (X ′1 ⊕X ′′1 , . . . , X ′n ⊕X ′′n).

Then X is ε-bit-biased against sums modulo M .

Convergence of the bias for large weights

The bias of a coefficient vector with respect to the uniform distribution can be large if there
are only a few non-zero elements in the vector. However, when the weight is large, the bias
is guaranteed to be small.

Lemma 9.3. Let (a1, . . . , an) ∈ ZnM be a coefficient vector of weight w. Then

|biasU(a1, . . . , an)| ≤
(

1− 1

M2

)w
In particular, for w ≥M2 log(1/ε) the bias is at most ε/2.

Notice that the above lemma holds for all coefficient vectors (a1, . . . , an) and moduli M ,
even when M is composite and the coefficients are not relatively prime to M . For example,
when M = 6 and (a1, . . . , an) = (2, . . . , 2). In such a case,

∑
i aiRi mod M does not

converge to the uniform distribution on ZnM , but the above lemma still says that the bias
tends to zero.

A similar result holds if we consider the bias of a large weight coefficient vector under a
skewed distribution.

Lemma 9.4. Let (a1, . . . , an) ∈ ZnM be a coefficient vector of weight w. Let Z1, . . . , Zn ∈
{0, 1} be independently distributed with Pr[Zi = 0] = (1 + α)/2. Then

|biasZ1,...,Zn(a1, . . . , an)| ≤
(

1− Ω

(
1− α2

M2

))w
In particular, for w ≥ cM2 log(1/ε)/(1−α2) for a sufficiently large constant c, the bias is at
most ε/2.

133



www.manaraa.com

9.2.2 Hashing

We use hashing as one of the ingredients in our construction. A family (multiset) of functions
H = {h : [n] → [k]} is called a family of hash functions, if a randomly chosen function
from the family behaves pseudorandomly under some specific meaning. We consider a hash
function H : [n] → [k] to be a random variable depicting a randomly chosen function from
the family. We say H can be generated efficiently and explicitly using s random bits, if a
random function in the family can be sampled by a randomized polynomial-time algorithm
using s random bits, and this function can be evaluated using a deterministic polynomial-
time algorithm.

Fix S ⊂ [n]. We define the j-th bucket of H with respect to S, to be the set of elements
of S mapped by H into j, i.e. {s ∈ S : H(s) = j} = H−1(j) ∩ S.

We will use the following three constructions of hash functions.

Lemma 9.5. Assume k is a power of 2. There exists a hash function H1 : [n] → [k] such
that for every set S ⊂ [n] of size at most k log(1/ε), the probability that H1 has a bucket
H−1

1 (j) ∩ S with more than 100 log(1/ε) elements is at most ε/100. Moreover, H1 can be
generated explicitly and efficiently using O(log n+ log(k/ε) log(k log(1/ε))) random bits.

Lemma 9.6. Assume k is a power of 2. There exists a hash function H2 : [n] → [k] such
that for every S ⊂ [n] of size at least 100k2, the probability that H2 has an empty bucket
H−1

2 (j) ∩ S is at most 1/100. Moreover, H2 can be generated explicitly and efficiently using
O(log n+ log2 k) random bits.

Lemma 9.7. There exists a hash function H3 : [n]→ [16 log(1/ε)] such that for every S ⊂ [n]
of size at least 800k log(1/ε), the probability that H3 has at least log(1/ε) buckets H−1

3 (j)∩S
with at most k elements is at most ε/100. Moreover, H3 can be generated explicitly and
efficiently using O(log n+ log(1/ε) log(k log(1/ε))) random bits.

The constructions of the hashes in Lemmas 9.5, 9.6 and 9.7 are based on almost t-wise
independence. A sequence of random variables X1, . . . , Xn ∈ {0, 1} is said to be t-wise
independent if any t random variables in it are independent. It is said to be δ-almost t-wise
independent if any t random variables in it are δ-close in statistical distance to independent.
Explicit constructions of δ-almost t-wise independent distributions are known, with nearly
optimal seed length [NN93, AGHP90].

We identify a function h : [n]→ [`], where ` is a power of 2, by a sequence of n log ` bits.
We construct the hash functions by choosing the sequence of bits according to an δ-almost
t-wise independent distribution, where the values of δ and t differ in the three constructions.
The main tool in our analysis is a tail bound on t-wise independent distributions, due to
Bellare and Rompel [BR], extended to the case of δ-almost t-wise distributions. We defer
further details to the full version of the paper.

9.2.3 Pseudorandom generators for small space

An ingredient in our construction is the small-space pseudorandom generator of Impagliazzo,
Nisan, and Wigderson [INW94]. We first define branching programs, which form a non-
uniform model of small-space computations.
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Definition 9.8 (Branching program). A (read-once, oblivious) branching program of length
n, degree d and width w is a layered graph with n + 1 layers, where each layer contains at
most w vertices. From each vertex in the i-th layer (1 ≤ i ≤ n) there are d outgoint edges,
numbered 0, 1, . . . , d−1. A vertex in the first layer is designated as the start vertex. Running
the branching program on an input x1, . . . , xn ∈ [d] is done by following the path according
to the inputs, starting at the start vertex. The output of the branching program is the vertex
reached in the last layer.

Definition 9.9 (Pseudorandom generator for branching programs). A pseudorandom gen-
erator for branching programs of length n, degree d and width w with error ε is a function
G : {0, 1}r → [d]n, such that for every branching program of length n, degree d and width
w, the statistical distance between the output of the branching program when run on uniform
element in [d]n, and the output when run on G(Ur), is at most ε.

Lemma 9.8. [INW94] There exists an explicit pseudorandom generators for branching pro-
grams of length n, degree d, width w with error ε, which uses r = O(log d+(log n)(log(n/ε)+
logw)) truly random bits.

9.3 Construction using PRG for low-degree polynomi-

als

We present in this section a simple construction for prime powers M , based on pseudoran-
dom generators for low-degree polynomials. This construction is optimal for constant M ,
achieving a pseudorandom generator with seed length OM(log(1/ε)) (where the constant
depends exponentially on M).

Let W = Ω(M3 log 1/ε). We will construct two generators: one for coefficient vectors of
weight at most W , and one for coefficient vectors of weight at least W . Lemma 9.2 shows
that the bitwise-XOR of the two generators is a pseudorandom generator for all coefficient
vectors.

For small weights, we will use a distribution that is ε-almost W -wise independent. Such
a distribution trivially fools coefficient vectors of weight at most W . It can be explicitly
generated using O(log n+W + log 1/ε) = OM(log n/ε) random bits [NN93].

For large weights, let (a1, . . . , an) ∈ ZnM be a coefficient vector of weight at least W .
Consider first the distribution of a1R1+. . . anRn for independent and uniform bits R1, . . . , Rn.
By Lemma 9.3, |biasUn(a1, . . . , an)| < ε/2.

Consider now Zi ∈ {0, 1}, where Pr[Zi = 0] = c/M for some integer 1 ≤ c ≤ M − 1. By
Lemma 9.4,

|biasZ1,...,Zn∼(c/M,1−c/M)(a1, . . . , an)| < ε/4,

given that W = Ω(M3 log(1/ε)) with a large enough hidden constant.
The benefit of using this skewed distribution, is that it can be simulated by low-degree

polynomials modulo M . Since we assume M is a prime power, there is a polynomial g :
ZM → ZM that maps some c elements of ZM to 0, and the rest to 1. For example, if
M = pk, the polynomial g(x) = x(p−1)pk−1

maps elements divisible by p to 0, and the rest to
1. The degree of this g is at most M − 1.
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Let Z1, . . . , Zn ∈ {0, 1}n be generated by g(Y1), . . . , g(Yn), where Y1, . . . , Yn ∈ ZM are
uniform and independent. We thus have:

|biasZ1,...,Zn∼g(UZM )n(a1, . . . , an)| < ε/4

Note that

biasZ1,...,Zn∼g(UZM )n(a1, . . . , an) = EY1,...,Yn∈ZM [ωa1g(Y1)+···+ang(Yn)],

and that a1g(Y1) + · · · + ang(Yn) is a polynomial of degree deg(g) in Y1, . . . , Yn. Thus
we can derandomize the choice of Y1, . . . , Yn using a a pseudorandom generator for low-
degree polynomials [BV07, Lov08, Vio08]. We note the results in these papers are stated
for polynomials over prime finite fields, but they hold also for polynomials over ZM , using
small-bias spaces for ZnM [Kat89, AIK+90, RSW93, EGL+98, AM95] as a building block.

Lemma 9.9. For every M,n, d ∈ N, there is an explicit generator G : {0, 1}r → ZnM such
that for every polynomial f : ZnM → ZM of degree at most d, the distribution of f(ZnM)
and f(G(Ur)) are ε-close in statistical distance. The number of random bits required is
r = O(d2d log(M/ε) + d log(nM)).

We use the generator of Lemma 9.9 for error ε/4 and degree d = M − 1. We thus get an
explicit generator whose output distribution (Y ′1 , . . . , Y

′
n) ∈ ZnM , such that:

|E(Y ′1 ,...,Y
′
n)[ω

a1g(Y ′1)+...+ang(Y ′n)]− EY1,...,Yn∈ZnM [ωa1g(Y1)+...+ang(Yn)]| < ε/4

Thus, if we define our generator G′ to output g(Y ′1), . . . , g(Y ′n), we have Y ′1 , . . . , Y
′
n are

the output of G, we get an explicit generator,such that |biasG′(a1, . . . , an)| < ε/2. Hence, we
get that

|biasG′(a1, . . . , an)− biasG(a1, . . . , an)| < ε

The randomness requirement of our generator comes directly from that of G, which is
O(M2M−1 log(M/ε) +M log(nM)) = OM(log(n/ε)) for constant M .

9.4 Construction Based on Pseudorandom Walk Gen-

erators

9.4.1 A generator for small sums

We construct an ε-bit-biased generator for weights at most W = 105M24 log(1/ε). Let
(a1, . . . , an) ∈ ZnM be a coefficient vector of weight at most W .

The construction has three stages:

1. Partitioning the set of indices [n] into W buckets using the hash function H1.
Lemma 9.5 guarantees that with probability at least 1 − ε/100, each bucket contains
at most O(log(1/ε)) non-zero coefficients.
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2. For each bucket j, generate the Xi’s for i’s in the j’th bucket using an almost
O(log(1/ε))-wise independent distribution.

3. Use the INW generator given by Lemma 9.8 to generate the W seeds for the
O(log(1/ε))-wise independent distributions used for the different buckets.

Lemma 9.10. The above construction is an ε-bit-biased generator against coefficient vectors
of weight at most W , using O(log n+ log(M/ε) log(M log(1/ε))) random bits.

9.4.2 A generator for large sums

In this section we construct an ε-bit-biased distribution for coefficient vectors of weight at
least W = 105M24 log(1/ε),

Recall that by Lemma 9.3, when the weight is large, the bias under the uniform distri-
bution is small. Thus, to prove that a distribution is ε-bit-biased against large weight sums
modulo M , it is enough to show that its bias is also small. We construct our ε-bit-biased
generator in three steps:

• G1: a generator that has bias at most 1 − 1/M2 on every coefficient vector which is
not all zeros.

• G2: a generator that has bias at most 0.91 on every coefficient vector of weight at least
100M24.

• G3: a generator that has bias at most ε/2 on every coefficient vector of weight at least
105M24 log 1/ε.

The generator G3 will be our ε-bit-biased generator for large weights. We will sketch the
constructions of G1, G2 and G3, deferring full details and proofs to the full version of the
paper. The main ingredient in the construction will be a derandomized expander product,
which we now define and analyze.

Derandomized expander products

Definition 9.10. We say an undirected graph H is a (2r, 2d, λ)-expander if H has 2r vertices,
it is regular of degree 2d and all eigenvalues but the first have absolute value at most λ. We
will identify the vertices of H with {0, 1}r, and the edges exiting each vertex with {0, 1}d in
some arbitrary way.

We will need explicit constructions of expanders, which can be obtained from various
known constructions.

Lemma 9.11. For some constant Q = 2q, there exist an efficient sequence Hk of
(Qk, Q, 1/100)-expanders.

Impagliazzo, Nisan, and Wigderson [INW94] compose two pseudorandom generators us-
ing an expander as follows:
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Definition 9.11. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators. Let H be a (2r, 2d, λ)-
expander. We define G′ ⊗H G′′ : {0, 1}r+d → {0, 1}2t to be the concatenation (G′(x), G′′(y)),
where x is a random vertex in H, and y is a random neighbor of x in H.

Our main lemma relates the bias of G′ ⊗H G′′ to the biases of G′ and G′′:

Lemma 9.12. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators and let H be a (2r, 2d, λ)-
expander. Let (a1, . . . , at),(b1, . . . , bt) be two coefficient vectors. Then:

|bias(G′⊗HG′′)(Ur+d)(a1, . . . , at, b1, . . . , bt)|
≤ fλ(|biasG′(Ur)(a1, . . . , at)|, |biasG′′(Ur)(b1, . . . , bt)|)

where fλ(x, y) = xy + λ
√

1− x2
√

1− y2.

The bounds of [RV05] imply that if maxk∈ZM\0 |biasG′(Ur)(ka1, . . . , kat)| ≤ x then
maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(a1, . . . , at, a1, . . . , at)| ≤ x2 + λ · (1 − x2) = fλ(x, x). If also
maxk∈ZM\0 |biasG′′(Ur)(kb1, . . . , kbt)| ≤ y, then [RV05] proof can be extended to show
maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(ka1, . . . , kat, kb1, . . . , kbt)| ≤ xy + λ · (1 − xy), which is a
worse than our bound f(x, y) in case x 6= y and does not suffice for our purposes. In
addition, our result only requires a bound on the bias for the specific coefficient vectors
(a1, . . . , at), (b1, . . . , bt) of interest, and not multiples of those coefficient vectors; this is cru-
cial for our analysis when M is composite (cf., discussion after Lemma 9.3). On the other
hand, the results of [RV05] are more general in that they apply to generators G′,G′′ that
correspond to random walks on any expander, not just Cayley graphs of ZM .

Construction of G1

As in [INW94, RV05], we iterate the above product. Like [RV05] we can use the constant-
degree expander graphs H1, H2, . . . of Lemma 9.11 (as opposed to the expanders of degree
poly(nw/ε) used by [INW94] to prove Lemma 9.8). We define G′` : {0, 1}`q → {0, 1}2`−1q

iteratively. G′1 : {0, 1}q → {0, 1}q is the identity mapping, and G′` = G′`−1 ⊗H`−1
G′`−1. We

set G1 = G′` for the minimal ` such that 2`−1q ≥ n. We have:

Lemma 9.13. Let (a1, . . . , an) ∈ ZnM be a coefficient vector, which is not all zeros. Then:

biasG1(a1, . . . , an) ≤ 1− 1

M2
.

The seed-length of G1 is O(log n).

Construction of G2

We will construct G2 based on G1. Let (a1, . . . , an) be a coefficient vector. Assume first a
special case: Let n = k2s, and partition the set of coefficients into 2s consecutive parts, each
of size k. Assume that each part contain at least one non-zero coefficient. By Lemma 9.13,
applying G1 to each part independently gives bias of at most 1 − 1/M2. We use this to
analyze the bias of G1 when applied in the special case:
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Lemma 9.14. Let n = k2s. Let a1, . . . , an be a coefficient vector such that for every j ∈ [2s],
weight(ajk+1, ajk+2, . . . , a(j+1)k) > 0. Then:

biasG1(a1, . . . , an) ≤ min

(
1−

(
9

8

)s
1

M2
, 0.9

)
.

In particular if s ≥ 12 logM , we have biasG1(a1, . . . , an) ≤ 0.9.

We now construct the generator G2 in three steps:

• Obliviously partition the coefficients, using the hash function H2. Re-order the coeffi-
cients according to the partition. This guarantees that with probability at least 0.99,
the conditions of Lemma 9.14 hold.

• Use G1 on the re-ordered coefficients.

• Return the pseudorandom bits back to the original order.

We have:

Lemma 9.15. Let (a1, . . . , an) ∈ ZnM be a coefficient vector, of weight at least 100M24.
Then:

biasG2(a1, . . . , an) ≤ 0.91.

The seed length of G2 is O(log n+ log2M).

Construction of G3

We use G2 to build our final ε-bit-biased generator G3. The construction of G3 has three
parts:

• Use H3 to partition the inputs to O(log(1/ε)) buckets, such that with probability
1− ε/100, most buckets contain at least 100M24 non-zero coefficients.

• Use G2 on each bucket.

• Combine the generators for the separate buckets using expander products, with ex-
panders of growing degree as in [RV05].

Lemma 9.16. Let (a1, . . . , an) ∈ ZnM be a coefficient vector, of weight at least
105M24 log(1/ε). Then:

biasG3(a1, . . . , an) ≤ ε/2.

The randomness required by G3 is O(log n+ log(M/ε) log(M log(1/ε))).
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Chapter 10

Pseudorandom bit-generators for
low-degree polynomials

In this work we give the first construction of a pseudorandom generator, with seed length
O(log n), for CC0[p], the class of constant-depth circuits with unbounded fan-in MODp gates,
for some prime p. More accurately, the seed length of our generator is O(log n) for any
constant error ε > 0. In fact, we obtain our generator by fooling distributions generated by
low degree polynomials, over Fp, when evaluated on the Boolean cube. This result significantly
extends previous constructions that either required a long seed [LVW93] or that could only
fool the distribution generated by linear functions over Fp, when evaluated on the Boolean
cube [LRTV09, MZ09].

Enroute of constructing our PRG, we prove two structural results for low degree polyno-
mials over finite fields that can be of independent interest.

1. Let f be an n-variate degree d polynomial over Fp. Then, for every ε > 0 there exists a

subset S ⊂ [n], whose size depends only on d and ε, such that
∑

α∈Fnp :α 6=0,αS=0 |f̂(α)|2 ≤
ε. Namely, there is a constant size subset S such that the total weight of the nonzero
Fourier coefficients that do not involve any variable from S is small.

2. Let f be an n-variate degree d polynomial over Fp. If the distribution of f when
applied to uniform zero-one bits is ε-far (in statistical distance) from its distribution
when applied to biased bits, then for every δ > 0, f can be approximated over zero-one
bits, up to error δ, by a function of a small number (depending only on ε, δ and d) of
lower degree polynomials.

Joint work with Partha Mukhopadhyay and Amir Shpilka.

10.1 Introduction

A pseudorandom generator (PRG for short), over a domain D,1 for a family of tests T is an
explicit function G : Dr → Dn such that no test T ∈ T can distinguish a random output of

1One should think of D as either the Boolean cube {0, 1}n or as Fnp .
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G from truly uniform input elements in Dn. Namely,

max
T∈T

∣∣∣∣ Pr
x∈Dr

[T (G(x)) = 0]− Pr
x∈Dn

[T (x) = 0]

∣∣∣∣ ≤ ε .

Ideally, one would like to have the seed r as short as possible and the error ε to be as small
as possible. A pseudorandom generator is considered efficient if the seed length is O(log n)
(as in this case, for some applications, one can enumerate over all seeds to find a ‘good’ one).
Pseudorandom generators have been a major object of study in theoretical computer science
for several decades, and have found applications in the area of computational complexity,
cryptography, algorithms design and more (see [Gol08, AB09]).

A family of tests that was widely considered in the literature is low degree polynomials
over finite fields. Before stating the formal definition of a PRG for low degree polynomials
we fix some notation: let f be a function, and D a distribution over the inputs of f . We
denote by f(D) the output distribution of f given inputs sampled according to D. For a set
S we denote by f(S) the output distribution given that the inputs are uniformly sampled in
S (for example, f({0, 1}n) is the distribution of f over uniform input bits).

Definition 10.1 (Pseudorandom distributions for degree d polynomials). A distribution D
taking values in Fnp is pseudorandom for degree d polynomials over Fp with error ε if, for
any degree d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f(Fnp ) are ε-close
in statistical distance. A function G : {0, 1}r → Fnp is a pseudorandom generator for degree
d polynomials over Fp, if the output distribution of G, given uniformly sampled seeds, is a
pseudorandom distribution for degree d polynomials.

PRGs for linear polynomials over F2 were first constructed in [NN93] who gave PRGs
with O(log n) seed length. The distributions constructed in [NN93] are also known as ε-
biased distributions. Alon et al. extended this construction to work over arbitrary finite
fields [AGHP90]. In [LVW93] a pseudorandom generator for the class of bounded degree
polynomials over finite fields was given.2 The seed length of [LVW93] was not optimal
and was later improved in a sequence of works [BV07, Lov08, Vio08]. Note that all these
generators take as input vectors from Frp and output vectors in Fnp . In [LRTV09, MZ09]
a different kind of PRGs for linear polynomials were obtained. Both works constructed a
PRG G : {0, 1}r → {0, 1}n that fools distributions generated by linear polynomials over Fp,
when evaluated on {0, 1}n. Namely, if f =

∑n
i=1 αixi is a linear polynomial over Fp then the

two distributions f(G({0, 1}r)) and f({0, 1}n) are close to each other. Thus, although f is
a polynomial over Fp they restrict their attention to the behavior of f on Boolean inputs.
We call such a generator a bit-pseudorandom generator. We shall later give a more formal
definition of bit-PRGs.

Another family of tests that received a lot of attention is bounded depth circuits (i.e.
AC0 circuits). This is the class of constant-depth circuits with unbounded fan-in AND, OR
and NOT gates. AC0 is probably the most intensively studied amongst classes of small-depth
circuits. H̊astad [H̊as86] showed that the PARITY function cannot be approximated by any

2This is not explicitly stated in [LVW93], but it follows from their result for depth 2 circuits with a
symmetric function at the top.

141



www.manaraa.com

polynomial size AC0 circuit. I.e., that no polynomial size AC0 circuit agrees with parity on
more than 1

2
+ exp(−n) fraction of inputs. In other words, the correlation of PARITY with

AC0 is exponentially small. This result was later used by Nisan [Nis91] for constructing effi-
cient pseudorandom generators for AC0 (these pseudorandom generators use r = polylog(n)
bits). Recently, following a breakthrough by Bazzi [Baz07], Braverman [Bra09] showed that
any polylog-wise independent distribution is pseudorandom for AC0 circuits, thus settling
a conjecture of Linial and Nisan [LN90]. AC0[p] is another well studied class of circuits,
consisting of all constant-depth circuits with unbounded fan-in AND, OR, NOT and MODp

gates (a MODp gate outputs 1 if the sum of its inputs is divisible by p, and 0 otherwise).
In contrast to the impressive success in constructing pseudorandom generators for AC0, no
PRGs are known for AC0[p]. One reason is that no strong correlation lower bounds are known
for this class. Razborov and Smolensky [Raz87, Smo87] proved exponential lower bounds
for AC0[p] circuits and their results also imply correlation lower bounds, albeit those are
much weaker than the ones known for AC0. Namely, [Raz87, Smo87] showed that the MODq

function has polynomially small correlation with AC0[p] when p and q are co-prime. The
class of AC0[m] where m is not a prime power is only very weakly understood; in particular,
currently we cannot separate it from NP!

10.1.1 Our results

Motivated by the problem of constructing pseudorandom generators for AC0[p], we study a
natural subclass - CC0[p] circuits. The class CC0[p] is the class of constant depth circuits
using only MODp gates. While exponential lower bounds for this class follow from the
work of Smolensky [Smo87], no pseudorandom generator better than the one constructed
in [LVW93] (whose seed length is r = exp(

√
log n)) is known for it. Our main result is an

explicit pseudorandom generator fooling any CC0[p] circuit while using only r = O(log n)
random bits, for any fixed error ε > 0. Actually, our construction gives pseudorandom
generators for low-degree polynomials over finite fields, from which the result for CC0[p]
follows: Let Fp be a prime finite field. The MODp function can be computed by a degree
p− 1 polynomial over Fp

MODp(x1, . . . , xn) = (x1 + . . .+ xn)p−1 (mod p) .

Hence, any depth k circuit in CC0[p] can be computed by a polynomial over Fp of degree
d = (p − 1)k. Thus, in order to fool CC0[p] we have to fool the distribution induced by
low degree polynomials over Fp, when evaluated on inputs from the Boolean cube. In other
words, we have to generalize the aforementioned results of [LRTV09, MZ09] from linear
polynomials to any constant degree polynomials. This motivates the following definition of
bit-pseudorandom generators for polynomials.

Definition 10.2 (Bit-pseudorandom distributions for degree d polynomials). A distribution
D taking values in {0, 1}n is bit-pseudorandom for degree d polynomials over Fp with error ε
if, for any degree d polynomial f(x1, . . . , xn) over Fp, the distributions f(D) and f({0, 1}n)
are ε-close in statistical distance. A function G : {0, 1}r → {0, 1}n is a bit-pseudorandom
generator for degree d polynomials over Fp if the output distribution of G over a uniform
seed is a bit-pseudorandom distribution for degree d polynomials.
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Notice the difference between this definition and Definition 10.1 where one has to fool
the distribution of the polynomial when evaluated over the entire space and not just over
the Boolean cube. As mentioned above, PRGs for polynomials over small finite fields were
studied in several works [LVW93, BV07, Lov08, Vio08]. The best result to date is by Viola.

Theorem 10.1 (Theorem 1 in [Vio08]). There exists an explicit and efficient function G :
{0, 1}r → Fnp for r = O(d · log(pn) + 2d · log(1/ε)) such that G({0, 1}r) is pseudorandom for
degree d polynomials over Fp with error ε.

The problem of construction bit-pseudorandom generators for linear polynomials (i.e. the
case of d = 1) was first studied by [LRTV09, MZ09] in the context of small-space computa-
tions. Before describing their generator we need a few notations. For a = (a1, . . . , an) ∈ Fnp
define ap−1 = (ap−1

1 , . . . , ap−1
n ) ∈ {0, 1}n to be the p − 1 power of a. Similarly for a distri-

bution D ⊂ Fnp , define Dp−1 ⊂ {0, 1}n by raising each element of D to the p − 1 power.
[LRTV09, MZ09] discovered the following construction for a bit-pseudorandom generator
for linear polynomials over Fp: the bitwise-XOR of the p − 1 power of a pseudorandom
distribution for degree (p− 1) polynomial over Fp, and a k-wise independent distribution.

Theorem 10.2 (Bit-pseudorandom distribution for linear polynomials [LRTV09, MZ09]).
Let Fp be a prime finite field and ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom
distribution for degree p − 1 polynomials over Fp with error ε. Let K ⊂ {0, 1}n be a k-
wise independent distribution for k = O(p3 log 1/ε). Then Dp−1 ⊕ K is bit-pseudorandom
distribution for linear polynomials over Fp with error O(ε).

Our main result extends Theorem 10.2 to any constant degree polynomial. We prove
that the following is a bit-pseudorandom distribution for degree d polynomials over Fp:
the bitwise-XOR of the p − 1 power of a pseudorandom distribution for degree ((p − 1)d)
polynomials over Fp, and a k-wise independent distribution.

Theorem 10.3 (Main Theorem: Bit-pseudorandom distribution). Let Fp be an odd prime
finite field, d ≥ 1 an integer and ε > 0 an error parameter. Then there exist δ = δ(p, d, ε)
and k = k(p, d, ε) such that the following holds. Let D ⊂ Fnp be a pseudorandom distribution
for degree ((p − 1)d) polynomials with error δ. Let K ⊂ {0, 1}n be a k-wise independent
distribution. Then, the bitwise-XOR of the two distributions Dp−1⊕K is a bit-pseudorandom
distribution for degree d polynomials over Fp with error ε. The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function, and cp,d > 0 is some constant which
depends on p and d.

An immediate corollary is that there exists an efficient and explicit pseudorandom gen-
erator G : {0, 1}r → {0, 1}n fooling any depth-k circuit in CC0[p] with error ε, where
r = cp,k,ε · log n.

Corollary 10.1 (Pseudorandom generators for CC0[p]). Let p be an odd prime number and
ε > 0 an error parameter. For any k > 0 there exists an explicit pseudorandom generator
G : {0, 1}r → {0, 1}n, where r = cp,k,ε · log n, such that for any depth k circuit C ∈ CC0[p],
the statistical distance between the two distributions C({0, 1}n) and C(G({0, 1}r)) is at most
ε.
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Our proof of Theorem 10.3 is based on two new structural results for low degree
polynomials, over finite fields, which may be of independent interest:

The first result is on the Fourier spectrum of such polynomials. Let f : Fnp → Fp be a
function. The α-Fourier coefficient of f , for α ∈ Fnp , is defined as

f̂(α) = Ex∈Fnp
[
ωf(x)−〈x,α〉] ,

where ω = e2πi/p is a primitive p-root of unity, and 〈x, α〉 =
∑n

i=1 xiαi is the inner product
of x and α. The structural result we prove is that the Fourier coefficients of any low-degree
polynomial cannot be spread over many disjoint sets. In other words, we show that one can
always find a small set S ⊂ [n] such that almost all Fourier coefficients intersect S (that is,
have some nonzero entry inside S). We note that while Theorem 10.3 is interesting only for
odd p,3 this structural result is non-trivial also for polynomials over F2.

Theorem 10.4 (The Fourier spectrum of low-degree polynomials over finite fields). For
every prime finite field Fp, degree d ≥ 1 and error ε > 0 there exists a constant C(d, ε) ≤
(1/ε)O(4d) such that the following holds. Let f(x1, . . . , xn) be a degree d polynomial over Fp.
Then there exists a subset S ⊂ [n] of size at most |S| ≤ C(d, ε) such that∑

α∈Fnp :α 6=0,αS=0

|f̂(α)|2 ≤ ε ,

where αS is the restriction of α to coordinates in S. In words, almost all nonzero Fourier
coefficients of f intersect S.

Our second structural result concerns the structure of polynomials with the following prop-
erty. Denote with Up the distribution over {0, 1}n where each bit is chosen independently to
be 0 with probability 1/p and 1 with probability 1−1/p. We call Up the p-biased distribution.
We show that if the distributions f(Up) and f({0, 1}n) are ε-far, then f can be approximated,
over {0, 1}n, by a function of a small number of lower degree polynomials. To formally state
our theorem we need some definitions.

Definition 10.3 (Bit-Rank). Let g : {0, 1}n → Fp be a function. The d-bit-rank of g, denoted
bitrankd(g), is the minimal number of degree d polynomials over Fp required to compute g
over {0, 1}n. That is, rankd(g) = k where k is the minimal number such that there exist
k degree d polynomials f1, . . . , fk : Fnp → Fp and a function Γ : Fkp → Fp such that for all
x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

Example 10.1. Consider the function g(x) =
∑

i 6=j xixj over Fp for p > 2. We have that
the 1-bit-rank of g is 1, as for all x ∈ {0, 1}n

g(x) = (x1 + . . .+ xn)2 − (x2
1 + . . .+ x2

n) = (x1 + . . .+ xn)2 − (x1 + . . .+ xn) .

Thus, for x ∈ {0, 1}n, g(x) is determined by the linear function `(x) = x1 + . . .+ xn. Notice
that as a quadratic polynomial over Fp, the rank of g (i.e. the minimal number of linear
functions required to compute g on inputs from Fnp) is either n− 1 or n, depending on p.

3For p = 2 it reduces to the case of pseudorandom distributions.
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Our second structural result is the following.

Theorem 10.5 (Structure of bit-biased polynomials). Let f(x1, . . . , xn) be a degree d polyno-
mial over Fp such that the statistical distance between the distributions f(Up) and f({0, 1}n)
is at least ε. Then, for every δ > 0, there exists a function g : {0, 1}n → Fp such that
Prx∈{0,1}n [g(x) 6= f(x)] ≤ δ and bitrankd(g) ≤ pO(c) where4 c = C((p− 1)(d+ 1), δε2/p3).

In fact, for our proof we require such a polynomial g that approximates f with respect
to (an affine shift of) Up, but we find this statement more appealing.

10.1.2 Proof overview

Pseudorandom generators that fool low degree polynomials over Fnp were obtained in [BV07,
Lov08, Vio08]. In our case we only consider the distribution of the polynomial over {0, 1}n
(and not over Fnp as the aforementioned results), which creates new obstacles, and requires
a different approach.

We sketch below the proof of Theorem 10.3. Our proof is carried by induction on the
degree d, and uses Theorem 10.4 and (a variant of) Theorem 10.5 as important technical
ingredients. Let f(x) = f(x1, . . . , xn) be a polynomial of degree d over Fp. The base case of
d = 1 was established in [LRTV09, MZ09], hence we assume from now on d ≥ 2.

Regular polynomials Consider the p-biased distribution Up. This distribution can be
simulated by low-degree polynomials over Fp: let x ∈ Fnp be chosen uniformly at random;

then, xp−1 = (xp−1
1 , . . . , xp−1

n ) is distributed according to Up. Furthermore, it is easy to

construct a pseudorandom distribution fooling f(Up) as follows. Let f̃(x) = f(xp−1). Then

f̃ is a polynomial of degree (p − 1)d, and the distributions f̃(Fnp ) and f(Up) are identical.
In particular, any distribution fooling degree (p − 1)d polynomials over Fp (such as those
guaranteed by Theorem 10.1) also fools f(Up).

Thus, if the polynomial f is regular in the sense that it cannot distinguish between the
uniform distribution over {0, 1}n and the p-biased distribution Up, then one can simply use

a pseudorandom generator for f̃ to get a pseudorandom generator for f . Hence, it is not
hard to deduce the following lemma.

Lemma (Lemma 10.1, informal statement). Let f(x) be a degree d polynomial over Fp such
that the distributions f(Up) and f({0, 1}n) are ε-close. Let D ⊂ Fnp be a pseudorandom dis-
tribution for degree ((p−1)d) polynomials over Fp with error ε. Then f(Dp−1) and f({0, 1}n)
are O(ε)-close.

Non-regular polynomials We now have to deal with non-regular polynomials, i.e poly-
nomials that distinguish between uniform bits and the p-biased distribution. This is the
main challenge we tackle in the paper. In fact, we will show that this property is so strong
that bit-pseudorandom generators for degree d − 1 polynomials with small enough error
suffice to fool any such degree d polynomial. The proof consists of two steps. First we

4The function C(·, ·) is defined in the statement of Theorem 10.4.
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prove Theorem 10.6 (which is close in spirit to Theorem 10.5) that shows that f can be
well-approximated, with respect to (an affine shift of) Up, by a few polynomials of degree
d−1. We then prove that any distribution that fools degree d−1 polynomials (over {0, 1}n)
also fools f (Lemma 10.2).

We now explain the idea behind the proof of Theorem 10.6. Bogdanov and Viola proved
that if f(x) is a degree d polynomial over Fp such that f(Fnp ) is far from the uniform distri-
bution over Fp, then f can be well-approximated by a function of a few polynomials of lower
degree [BV07]. Following this motivating example, we would like to prove that if f(Up) is far
from uniform (a similar property can be easily obtained from the fact that f is not regular,
see Claim 10.1) then f can be well-approximated over Up by lower degree polynomials. How-
ever, the case of f(Fnp ) being far from uniform is easy to handle via directional derivatives,
as the input space is invariant under shifts (i.e. the mapping x→ x+ a for a ∈ Fnp maps the
uniform distribution over Fnp to itself). In our case, the input distribution Up is not invariant
under shifts, which creates a major obstacle for using existing techniques.

To overcome this obstacle we first ‘complete’ f to a polynomial over Fnp that carries similar
properties: Define f⊕a = f(xp−1 ⊕ a), for some a ∈ {0, 1}n. Then f⊕a is a polynomial of
degree d′ = (p−1)d and the distributions f⊕a(Fnp ) and f(Up⊕a) are identical. We show that
as f is non-regular, there exists a ∈ {0, 1}n such that f⊕a is biased (Corollary 10.3). Similarly
to [BV07] we get that f⊕a can be approximated by a few of its directional derivatives, where
the directional derivative of f⊕a in direction y ∈ Fnp is defined as f⊕ay (x) = f⊕a(x+y)−f⊕a(x).
However, in our case we need a stronger property to hold. Define the support of y to be the
set of nonzero entries in y, Supp(y) = {i ∈ [n] : yi 6= 0}. We would like to show that f⊕a

can be approximated by a few directional derivatives having small supports. To obtain this
we need Theorem 10.4 that shows that most of the Fourier weight of f⊕a is supported on
coefficients that intersect a relatively small set S. Using this theorem we get

Claim (Claim 10.8, informal statement). Let f̃ be a polynomial over Fp of degree d′. For
every δ > 0 there exist a small number of directions y1, . . . , yk ∈ Fnp such that |Supp(y1) ∪
. . . ∪ Supp(yk)| is small, and such that f̃ can be well-approximated by some function Γ of

f̃y1 , . . . , f̃yk . Namely,

Pr
x∈Fnp

[f̃(x) 6= Γ(f̃y1(x), . . . , f̃yk(x))] ≤ δ.

This is still not enough as the derivatives of f⊕a have degree (p − 1)d − 1. However,
we further show that sparse directional derivatives of f⊕a can be calculated by directional
derivatives of f and a few variables.

Claim (Claim 10.9, informal statement). Any directional derivative f⊕ay (x) can be computed
by some function of fy(x) and {xi : i ∈ Supp(y)}.

We prove this claim by showing that any derivatives of f⊕a, with respect to a direction
supported on S, satisfies (f⊕a)y(x) = fw(xp−1⊕a) for some w that depends only on y and a,
and is supported on S. Combining Claims 10.8 and 10.9 yields the required approximation
of f .

To complete the picture we shortly remark on the proof of Theorem 10.4. The proof is
by induction on the degree using Fourier analysis. The basic idea is that for every linear
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subspace A ⊆ Fnp we have that

∑
α∈Fnp :α 6=0,αS=0

|f̂(α)|2 ≤ Ea∈A

 ∑
α∈Fnp :α 6=0,αS=0

|f̂a(α)|2
+ Ea∈A

[
|f̂a(0)|2

]
.

Using this useful inequality we break the analysis to two cases depending on whether f has
a high Fourier coefficient or not. If all of f ’s Fourier coefficients are small, then we construct
S in the following way: we pick a constant dimensional subspace A at random. For each
derivative fa, where a ∈ A, we find a set Sa as guaranteed by the induction hypothesis (for
some ε′ depending on ε and d). Finally, we set S to be the union of all the Sa-s. When
f has a high Fourier coefficient, we approximate f using a small number of lower degree
polynomials and set S to be the union of their corresponding sets.

10.1.3 Paper organization

In Section 10.2 we fix some notations. We prove our main theorem, Theorem 10.3, in
Section 10.3. The proof is based on Theorem 10.6 whose proof is given in Section 10.5,
where we also prove Theorem 10.5. The proof of Theorem 10.6 relies on Theorem 10.4
that we prove in Section 10.6. We conclude and give some open problems in Section 10.7.
For completeness, we sketch the proof for the linear case of Theorem 10.3 (i.e. d = 1) in
Section 10.8.

10.2 Preliminaries

We will be working over a fixed prime finite field Fp. Let f(x) = f(x1, . . . , xn) be a degree d
polynomial over Fp. Let D be a distribution. The support of D is the set of elements which
have positive probability under D. If the support of D is contained in a set S, we denote this
by D ⊆ S. For a distribution D ⊂ Fnp , we denote by f(D) the output distribution of f given
inputs samples according to D. For a subset S ⊂ Fnp we denote by f(S) the distribution of
f over inputs chosen uniformly from S. In particular, f(Fnp ) denotes the distribution of f
over uniform field elements, and f({0, 1}n) denotes the distribution of f over uniform bits.

The statistical distance between two distributions D′,D′′ is given by sd(D′,D′′) =
1
2

∑
x |Pr[D′ = x] − Pr[D′′ = x]|. If the statistical distance is at most ε, the distribu-

tions are said to be ε-close. If the statistical distance is at least ε, the distributions are said
to be ε-far. It is easy to verify that statistical distance satisfies the triangle inequality.

Denote [n] = {1, 2, . . . , n}. A distribution K ⊂ {0, 1}n is said to be k-wise independent
if for any k distinct indices i1, . . . , ik ∈ [n], the distribution K restricted to these indices is
uniform over {0, 1}k.

For a function f : Fnp → Fp we denote by f̂ : Fnp → C its Fourier transform, defined as

f̂(α) = Ex∈Fnp [ωf(x)−〈x,α〉], where ω = e2πi/p and 〈x, α〉 =
∑n

i=1 αixi is the inner product of x

and α. The Fourier representation of f(x) is given by f(x) =
∑

α∈Fnp
f̂(α)ω〈x,α〉. Parseval’s

identity gives that
∑

α∈Fnp
|f̂(α)|2 = 1.
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10.3 Bit pseudorandom generator for low degree poly-

nomials

In this section we prove Theorem 10.3. As sketched in Section 10.1.2 we first prove the
theorem for the (easy) case of regular polynomials (a notion that we shall soon define) and
then for non-regular polynomials.

10.3.1 Regular polynomials

Definition 10.4. The p-biased distribution Up ⊂ {0, 1}n is the distribution in which we
choose each bit independently to be 0 with probability 1

p
and to be 1 with probability 1− 1

p
.

We call a polynomial f : Fnp → Fp ε-regular if sd(f(Up), f({0, 1}n)) ≤ ε. The following
lemma shows that if f is a regular polynomial then it is fooled by the p − 1 power of a
pseudorandom distribution for degree (p− 1)d polynomials.

Lemma 10.1. Let f(x1, . . . , xn) be an ε-regular polynomial of degree d over Fp. Let D ⊂ Fnp
be a pseudorandom distribution for degree (p − 1)d polynomials over Fp with error ε. Then
sd(f(Dp−1), f({0, 1}n)) ≤ 2ε.

Proof. Let f̃ : Fnp → Fp be defined as f̃(x1, . . . , xn) = f(xp−1
1 , . . . , xp−1

n ). As f is a de-

gree d polynomial, f̃ is a polynomial of degree (p − 1)d. Since D is pseudorandom against
polynomials of degree (p − 1)d, we have that f̃(D) and f̃(Fnp ) are ε-close. By the defini-

tion of f̃ it follows that f(Dp−1) and f(Up) are ε-close. Hence, sd(f({0, 1}n), f(Dp−1)) ≤
sd(f({0, 1}n), f(Up)) + sd(f(Up), f(Dp−1)) ≤ 2ε.

10.3.2 Non-regular polynomials

We now turn to study non regular polynomials. Namely, polynomials that can distinguish
between the uniform distribution over {0, 1}n and the p-biased distribution. The main tool
in the proof is (a variant of) Theorem 10.5 that shows that non regular polynomials possess
a very special structure. Namely, that a non-regular polynomial can be well approximated
by a function of a small number of lower degree polynomials.

We will start by proving that non-regular polynomials admit a non-uniform distribution
when applied to inputs sampled from some shift of a p-biased distribution. For a distribution
D ⊂ {0, 1}n and an element a ∈ {0, 1}n denote by D ⊕ a the distribution generated by
bitwise-XORing the element a to all elements of D.

Claim 10.1. Let f(x1, . . . , xn) be a degree d polynomial over Fp such that the distributions
f(Up) and f({0, 1}n) are ε-far. Then there exists a ∈ {0, 1}n such that the distribution
f(Up ⊕ a) is ε/2-far from the uniform distribution over Fp.

Proof. If f(Up) and f({0, 1}n) are ε-far, at least one of them is ε/2-far from the uniform
distribution over Fp. If it is f(Up), then we are done with a = 0. Otherwise assume that
f({0, 1}n) is ε/2-far from the uniform distribution over Fp. We can generate the uniform
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distribution over {0, 1}n by first choosing a ∈ {0, 1}n uniformly at random, and then bitwise-
XORing it to the distribution Up. In other words, the uniform distribution over {0, 1}n is
a convex combination of the distributions {Up ⊕ a : a ∈ {0, 1}n}. Thus, the distribution
f({0, 1}n) is a convex combination of the distributions {f(Up ⊕ a) : a ∈ {0, 1}n}. In partic-
ular, there must exist some a ∈ {0, 1}n such that the distribution f(Up ⊕ a) is ε/2-far from
uniform.

We recall the definition of bitrank given in Subsection 10.1.1.

Definition (Bit-Rank). Let g : {0, 1}n → Fp be a function. The d-bit-rank of g, denoted
bitrankd(g), is the minimal number of degree d polynomials over Fp required to compute g
over {0, 1}n. That is, rankd(g) = k where k is the minimal number such that there exist
k degree d polynomials f1, . . . , fk : Fnp → Fp and a function Γ : Fkp → Fp such that for all
x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

The following theorem, shows that non-regular polynomials have a low bit-rank. We shall
later deduce Theorem 10.5 from it. We defer the proof of the theorem to Section 10.5.

Theorem 10.6. Let f : Fnp → Fp be a polynomial of degree d + 1 for some d ≥ 1. Assume
that, for some a ∈ {0, 1}n, the distribution of f(Up ⊕ a) is ε-far from uniform. Then for
every δ > 0 there exists a function g : {0, 1}n → Fp such that Prx∈Up⊕a[g(x) 6= f(x)] ≤ δ and
bitrankd(g) ≤ c+ pc where5 c = C((p− 1)(d+ 1), δε2/p3).

The next lemma shows that if a degree d + 1 polynomial f(x) can be approximated,
under some shift of the p-biased distribution, by a function with a low d-bit-rank, then
bit-pseudorandom distributions for degree d polynomials also fool f .

Lemma 10.2. Let f : Fnp → Fp be a degree d+1 polynomial. Assume that there is a function
g : {0, 1}n → Fp such that bitrankd(g) = k and for some a ∈ {0, 1}n it holds that

Pr
x∈Up⊕a

[f(x) = g(x)] ≥ 1− δ.

Let D ⊂ {0, 1}n be a bit-pseudorandom distribution for degree d polynomials with error ε.

Then f(D) and f({0, 1}n) are (ck1ε+ c2δ)-close, for c1 = p2(p−1)(d+1)
and c2 = 4p · 2(p−1)(d+1).

To ease the reading we first show how to obtain Theorem 10.3 using Theorem 10.6 and
Lemma 10.2. The proof of Lemma 10.2 is given in Section 10.4 and the proof of Theorem 10.6
is given in Section 10.5.

10.3.3 Proof of Theorem 10.3

For convenience we repeat the statement of the theorem.

5The function C(·, ·) is defined in the statement of Theorem 10.4.
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Theorem. Let Fp be an odd prime finite field, d ≥ 1 be a degree and ε > 0 be an error
parameter. Then there exist δ = δ(p, d, ε) and k = k(p, d, ε) such that the following holds.
Let D ⊂ Fnp be a pseudorandom distribution for degree ((p − 1)d) polynomials with error
δ. Let K ⊂ {0, 1}n be a k-wise independent distribution. Then the bitwise-XOR of the two
distributions Dp−1 ⊕ K is bit-pseudorandom for degree d polynomials over Fp with error ε.
The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function, and cp,d > 0 is some constant which
depends on Fp and d.

Proof. The proof is by induction on the degree d. The case d = 1 was established in
[LRTV09, MZ09] (Theorem 10.2). We restate their result here. For completeness we give a
sketch of the proof in Section 10.8.

Theorem (Bit-pseudorandom distribution for linear polynomials). Let Fp be a prime finite
field and ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom distribution for
degree p − 1 polynomials over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise independent
distribution for k = O(p3 log 1/ε). Then Dp−1 ⊕K is bit-pseudorandom distribution against
linear polynomials over Fp with error O(ε).

We now proceed with the induction. Let d > 1, and let f(x) be a polynomial of degree
d+1. We divide the analysis into two cases. Assume first that f(Up) is ε/2-close to f({0, 1}n).
Lemma 10.1 implies that if D1 ⊂ Fnp is a pseudorandom distribution for degree (p−1)(d+ 1)

polynomials, with error ε/2, then f(Dp−1
1 ) and f({0, 1}n) are ε-close.

We now handle the case that f(Up) is ε/2-far from f({0, 1}n). By Claim 10.1 there
exists some a ∈ {0, 1}n such that f(Up ⊕ a) is (ε/4)-far from uniform. Let δ > 0 be
determined later. Applying Theorem 10.6 there exists a function g : {0, 1}n → Fp such that
Prx∈Up⊕a[f(x) 6= g(x)] ≤ δ and bitrankd(g) ≤ pc + c for c = C((p− 1)(d + 1), δ(ε/4)2/p3) =

O(pδ−1ε−1)O(4(p−1)(d+1)). Lemma 10.2 implies that if D′ ⊂ {0, 1}n is a bit-pseudorandom
distribution for degree d polynomials with error ξ (that will be determined soon) then f(D′)
and f({0, 1}n) are τ -close for

τ = cp
c+c

1 ξ + c2δ

where c1 = p2(p−1)(d+1)
and c2 = 4p · 2(p−1)(d+1). In order to get τ ≤ ε we set δ = ε/2c2 and

ξ = ε/2cp
c+c

1 . Substituting the parameters yields the bound

1/ξ ≤ exp(exp((1/ε)O(4(p−1)(d+1))) .

We now put things together. Let D2 ⊂ Fnp to be a pseudorandom distribution for degree
(p − 1)d polynomials with error δ = δ(p, d, ξ). Let K ⊂ {0, 1}n be a k-wise independent
distribution for k = k(p, d, ξ). By the induction hypothesis, D′ = Dp−1

2 ⊕ K is a bit-
pseudorandom distribution for degree d polynomials with error ξ. Thus, if f is not ε/2-
regular then D′ fools f with error ε. To combine the two case in our analysis we note that if
D ⊂ Fnp is a pseudorandom distribution against degree (p− 1)(d+ 1) polynomials with error
ξ then D satisfies the requirements of both D1 and D2 (recall that ξ � ε). Hence Dp−1 ⊕K
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is a bit-pseudorandom distribution against any polynomial of degree d + 1 with error ε. To
conclude the proof we note that as

δ(p, d+ 1, ε) = δ
(
p, d, 1/ exp(exp((1/ε)O(4(p−1)(d+1))))

)
and

k(p, d+ 1, ε) = k
(
p, d, 1/ exp(exp((1/ε)O(4(p−1)(d+1))))

)
then there is a constants cp,d > 0 such that

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

as claimed.

10.4 Approximately low bit-rank polynomials

In this section we give the proof of Lemma 10.2. We first give an overview of the proof.

Step 1. The first step in the proof is showing that if f is a degree d + 1 polynomial which
can be approximated by a function g of low d-bit-rank, then there is a distribution on
functions G, such that every function in the support of G has a low d-bit-rank and such
that for every x ∈ Fnp it holds that Prh∈G[f(x) = h(x)] ≥ 1 − δ (Lemma 10.3). That is, we
move from one function that compute f on most of the space to a distribution that is ‘good’
for every point x. The main idea behind the proof of this step is to use the self-correction
properties of low degree polynomials (Claim 10.2). This step is the main technical part of
the proof

Step 2. In the second step we show that if a function has a low d-bit-rank then any
bit-pseudorandom distribution for degree d polynomials fools it. The argument here is quite
straightforward (Claim 10.4).

Step 3. Finally, we show that if a function can be computed using a distribution on
functions that have low d-bit-rank (as we achieved in Step 1 above) then it is fooled by
bit-pseudorandom distributions for degree d polynomials (Claim 10.5).

10.4.1 Step 1: from average case to worst case approximation

As in the overview above we start by showing that there exists a distribution on low d-bit-rank
functions that correctly computes f everywhere (w.h.p.). To construct such a distribution we
shall refer to the self correction properties of polynomials over Fp. Using these properties we
will show that we can construct G by (roughly) considering many shifts of g (the polynomial
that computes f on a 1− δ fraction of Fnp ). We start with the following well known fact.
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Claim 10.2. Let f : Fnp → Fp be a degree d + 1 polynomial. For every x, y1, . . . , yd+2 ∈ Fnp
the following holds

f(x) =
∑

I⊆[d+2],|I|≥1

(−1)|I|+1f(x+
∑
i∈I

yI) .

Proof. Taking d + 2 partial derivatives of f(x), in directions6 y1, . . . , yd+2, iteratively, we
obtain the constant zero function. That is fy1,...,yd+2

(x) ≡ 0. The claim follows as, by
definition, fy1,...,yd+2

(x) = (−1)d+2
∑

I⊆[d+2](−1)|I|f(x+
∑

i∈I yI).

The following is an easy corollary.

Corollary 10.2. Let f : Fnp → Fp be a degree d+ 1 polynomial. Let t = (p− 1)(d+ 1) + 1.
For every x, y1, . . . , yt ∈ Fnp and a ∈ {0, 1}n the following holds

f(xp−1 ⊕ a) =
∑

I⊆[t],|I|≥1

(−1)|I|+1f((x+
∑
i∈I

yI)
p−1 ⊕ a) .

Proof. Define g⊕a(x) = f(xp−1 ⊕ a). Note that g⊕a is a polynomial of degree (p− 1)(d+ 1)
since

g⊕a(x1, . . . , xn) = f(α1x
p−1
1 + β1, . . . , αnx

p−1
n + βn)

where αi, βi are defined as follows. If ai = 0 then αi = 1, βi = 0 and if ai = 1 then
αi = −1, βi = 1. The claim is proved by applying Claim 10.2 to the polynomial g⊕a.

We now show that a shift of a low bit-rank polynomial also has low bit-rank.

Claim 10.3. Let g : {0, 1}n → Fp be a function. For a, c ∈ {0, 1}n, b ∈ Fnp define g⊕a,+b,⊕c :
{0, 1}n → Fp by g⊕a,+b,⊕c(x) = g(((x⊕c)+b)p−1⊕a). Then bitrankd(g

⊕a,+b,⊕c) ≤ bitrankd(g).

Proof. Assume bitrankd(g) = k. Consequently, there are k degree d polynomials f1, . . . , fk
and a mapping Γ : Fkp → Fp such that g(x) = Γ(f1(x), . . . , fk(x)). Thus

g⊕a,+b,⊕c(x) = g(((x⊕c)+b)p−1⊕a) = Γ(f1(((x⊕c)+b)p−1⊕a), . . . , fk(((x⊕c)+b)p−1⊕a)) .

We will conclude the proof by showing that each fj(((x⊕ c) + b)p−1 ⊕ a) is a polynomial of
degree at most d (in x). Define f ′j(x1, . . . , xn) = fj(α1x1 +β1, . . . , αnxn+βn) where αi, βi are
defined such that αixi+βi = ((xi⊕ci)+bi)

p−1⊕ai for xi ∈ {0, 1} (that is, βi = (ci+bi)
p−1⊕ai

and αi = −βi + (((1 ⊕ ci) + bi)
p−1 ⊕ ai)). As we applied an affine linear transformation to

the inputs x1, . . . , xn, we have deg(f ′j) ≤ deg(fj) ≤ d. We conclude that for any x ∈ {0, 1}n

g⊕a,+b,⊕c(x) = Γ(f ′1(x), . . . , f ′k(x)),

hence bitrankd(g
⊕a,+b,⊕c) ≤ k.

Let G be a distribution over functions g : {0, 1}n → Fp. The d-bit-rank of G is defined to
be the maximal d-bit-rank of a function in the support of G. The following lemma concludes
the idea sketched above and shows that if f is close to a function with a low bit-rank then
there is a distribution on low bit-rank functions that pointwise computes f .

6Recall that the derivative of f in direction y is defined as fy(x) = f(x + y) − f(x). It is easy to verify
that if f has degree d+ 1 then fy has degree at most d.
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Lemma 10.3. Let f : Fnp → Fp be a degree d+1 polynomial. Assume that there is a function
g : {0, 1}n → Fp such that bitrankd(g) = k and such that for some a ∈ {0, 1}n it holds that

Pr
x∈Up⊕a

[f(x) = g(x)] ≥ 1− δ .

Then, there is a distribution G on functions such that bitrankd(G) ≤ (2(p−1)(d+1)+1−1)k and
Prh∈G[f(x) = h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ.

Proof. We start by noting that the distribution Up ⊕ a is equivalent to the distribution of
xp−1 ⊕ a for uniform x ∈ Fnp . By our assumption we have that

Pr
x∈Fnp

[f(xp−1 ⊕ a) 6= g(xp−1 ⊕ a)] ≤ δ.

Applying Corollary10.2 to f , which is a degree d+ 1 polynomial, we obtain

f(xp−1 ⊕ a) =
∑

I⊆[t],|I|≥1

(−1)|I|+1f((x+
∑
i∈I

yI)
p−1 ⊕ a) (10.1)

for t = (p− 1)(d+ 1) + 1 and any y1, . . . , yt ∈ Fnp . Fix some x ∈ {0, 1}n. Let y1, . . . , yt ∈ Fnp
be chosen uniformly at random, and note that for any non-empty I ⊆ [t], the distribution
of x+

∑
i∈I yi is uniform over Fnp . Therefore, for every I 6= ∅ it holds that

Pr
y1,...,yt∈Fnp

[
f((x+

∑
i∈I

yi)
p−1 ⊕ a) 6= g((x+

∑
i∈I

yi)
p−1 ⊕ a)

]
≤ δ .

As xp−1 = x for x ∈ {0, 1}n we have that for such x-s f(xp−1⊕ a) = f(x⊕ a). Therefore, by
Equation (10.1) and the union bound we get

Pr
y1,...,yt∈Fnp

f(x⊕ a) 6=
∑

I⊆[t],|I|≥1

(−1)|I|+1g((x+
∑
i∈I

yi)
p−1 ⊕ a)

 ≤ (2t − 1)δ .

Hence, for every x ∈ {0, 1}n we have

Pr
y1,...,yt∈Fnp

f(x) 6=
∑

I⊆[t],|I|≥1

(−1)|I|+1g(((x⊕ a) +
∑
i∈I

yi)
p−1 ⊕ a)

 ≤ (2t − 1)δ .

For any setting of y1, . . . , yt ∈ Fnp , define

h(y1,...,yt)(x) =
∑

I⊆[t],|I|≥1

(−1)|I|+1g(((x⊕ a) +
∑
i∈I

yi)
p−1 ⊕ a) .

Let G denote the distribution over the functions h(y1,...,yt) obtained by sampling y1, . . . , yt ∈
Fnp uniformly at random. We conclude that for every x ∈ {0, 1}n it holds that

Pr
h∈G

[f(x) = h(x)] ≥ 1− (2t − 1)δ .

To complete the proof we bound the d-bit-rank of G. Each function h ∈ G is a linear
combination of g(((x ⊕ a) +

∑
i∈I yi)

p−1 ⊕ a) = g⊕a,+
∑
i∈I yi,⊕a(x), and by Claim 10.3 we

know that bitrankd(g
⊕a,+

∑
i∈I yi,⊕a) ≤ bitrankd(g) = k. Therefore, bitrankd(h) ≤ (2t − 1)k.

Consequently, bitrankd(G) ≤ (2t − 1)k.
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10.4.2 Steps 2 and 3: fooling approximately low bit-rank polyno-
mials

We start by arguing that bit-pseudorandom distributions for degree d polynomials also fool
functions with low d-bit-rank.

Claim 10.4. Let g : {0, 1}n → Fp be a function with bitrankd(g) = k. Let D ⊂ {0, 1}n
be a bit-pseudorandom distribution for degree d polynomials with error ε. Then g(D) and
g({0, 1}n) are (pk/2ε)-close.

Proof. Let g = Γ(f1(x), . . . , fk(x)) be a representation of g as a function of k polynomials of
degree≤ d. Denote withD1 ⊂ Fkp the joint distribution of (f1(x), . . . , fk(x)) when x ∈ {0, 1}n
is chosen uniformly at random. Similarly, denote with D2 ⊂ Fkp the joint distribution of

(f1(x), . . . , fk(x)) when x ∈ D. We will prove that D1 and D2 are (pk/2ε)-close and hence
g(D) and g({0, 1}n) are (pk/2ε)-close.

For α ∈ Fkp define 〈Di, α〉 ⊂ Fp to be the distribution of the inner product 〈y, α〉 where
y ∈ Fkp is sampled according to Di. In other words, for α = (α1, . . . , αk) ∈ Fkp we have that
〈D1, α〉 is the distribution of fα(x) =

∑
αifi(x) over uniform x ∈ {0, 1}n, and that 〈D2, α〉 is

the distribution of fα(x) for x ∈ D. Since D is a bit-pseudorandom distribution for degree d
polynomials with error ε and as each fα is a degree d polynomial (it is a linear combination
of polynomials of degree d), we get that the distributions 〈D1, α〉 and 〈D2, α〉 are ε-close.
The following well-known fact shows that two distributions with similar Fourier coefficients
must be close. For completeness we give the proof in Section 10.9.

Fact 10.1. Let D1,D2 ⊂ Fkp be two distributions. Assume that for every α ∈ Fkp the distri-

butions 〈D1, α〉 and 〈D2, α〉 are ε-close. Then D1 and D2 are (pk/2ε)-close.

It follows that D1 and D2 are (pk/2ε)-close which concludes the proof.

We next prove that if a degree (d+ 1) polynomial f can be pointwise approximated by a
distribution with a low d-bit-rank, then f is in fact fooled by bit-pseudorandom distributions
for degree d polynomials.

Claim 10.5. Let f : Fnp → Fp be a degree d + 1 polynomial. Let G be a distribution over
functions h : {0, 1}n → Fp such that bitrankd(G) = k, and such that for every x ∈ {0, 1}n

Pr
h∈G

[f(x) = h(x)] ≥ 1− δ.

Let D ⊂ {0, 1}n be a bit-pseudorandom distribution for degree d polynomials with error ε.
Then f(D) and f({0, 1}n) are (pk/2ε+ pδ)-close.

Proof. We need to bound

sd(f(D), f({0, 1}n)) = 1
2

∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈{0,1}n

[f(x) = t]| .

Let E ⊂ {0, 1}n be some distribution. We now prove that for every t ∈ Fp it holds that

| Pr
x∈E

[f(x) = t]− Pr
x∈E,h∈G

[h(x) = t]| ≤ δ.
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First, note that

Pr
x∈E

[f(x) = t] = Pr
x∈E,h∈G

[f(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]

= Pr
x∈E,h∈G

[h(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]

and

Pr
x∈E,h∈G

[h(x) = t] = Pr
x∈E,h∈G

[h(x) = t ∧ f(x) = h(x)] + Pr
x∈E,h∈G

[h(x) = t ∧ f(x) 6= h(x)] .

Therefore, we get that

| Pr
x∈E

[f(x) = t]− Pr
x∈E,h∈G

[h(x) = t]| =

| Pr
x∈E,h∈G

[f(x) = t ∧ f(x) 6= h(x)]− Pr
x∈E,h∈G

[h(x) = t ∧ f(x) 6= h(x)]| ≤

Pr
x∈E,h∈G

[f(x) 6= h(x)] = Ex∈E Pr
h∈G

[f(x) 6= h(x)] ≤ δ.

The claim now follows as

2 · sd(f(D), f({0, 1}n)) =
∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈{0,1}n

[f(x) = t]|

≤
∑
t∈Fp

| Pr
x∈D,h∈G

[h(x) = t]− Pr
x∈{0,1}n,h∈G

[h(x) = t]|

+
∑
t∈Fp

| Pr
x∈D

[f(x) = t]− Pr
x∈D,h∈G

[h(x) = t]|

+
∑
t∈Fp

| Pr
x∈{0,1}n

[f(x) = t]− Pr
x∈{0,1}n,h∈G

[h(x) = t]|

≤ Eh∈G[
∑
t∈Fp

| Pr
x∈D

[h(x) = t]− Pr
x∈{0,1}n

[h(x) = t]|] + 2pδ

≤ Eh∈G[2 · sd(h(D), h({0, 1}n))] + 2pδ

≤ 2pk/2ε+ 2pδ.

The proof of Lemma 10.2 now follows easily.

Proof of Lemma 10.2. By Lemma 10.3 there is a distribution G on functions such that
bitrankd(G) ≤ (2(p−1)(d+1)+1−1)k and Prh∈G[f(x) = h(x)] ≥ 1−(2(p−1)(d+1)+1−1)δ. Applying
Claim 10.5 we get that the distance between f(D) and f({0, 1}n) is bounded by

sd(f(D), f({0, 1}n)) ≤ p2(p−1)(d+1)kε+ p2(p−1)(d+1)+2δ .
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10.5 The structure of non-regular polynomials

In this section prove of Theorem 10.6. To ease the reading we repeat it here.

Theorem (Theorem 10.6). Let f : Fnp → Fp be a polynomial of degree d+ 1 for some d ≥ 1.
Assume that, for some a ∈ {0, 1}n, the distribution of f(Up⊕a) is ε-far from uniform. Then
for every δ > 0 there exists a function g : {0, 1}n → Fp such that Prx∈Up⊕a[g(x) 6= f(x)] ≤ δ

and bitrankd(g) ≤ c+ pc where7 c = C((p− 1)(d+ 1), δε2/p3) = (p3/δε2)O(4(p−1)(d+1)).

Before giving the actual proof we first give an overview of the main steps.

Step 1: We start by showing that if f is non-regular then it must have a somewhat large
‘Fourier coefficient’ with respect to a shifted p-biased distribution (Corollary 10.3).

Step 2: Defining f⊕a(x) = f(xp−1 ⊕ a) it follows that f⊕a is a degree (p − 1)(d + 1)
polynomial that has a (relatively) high bias. In addition, Theorem 10.4 implies that there
is a relatively small set of variables S such that the weight of the Fourier mass of f⊕a, that
is supported on S̄, is small.

Step 3: Next we show that if a polynomial has the two properties found in Step 2
then it can be well approximated by (a function of) a small number of its derivatives
and the variables in S. This is the main technical part of the proof (Claim 10.8 and

Corollary 10.4). Intuitively, the idea is the following: Note that when f̂(0) 6= 0 we

have that ω−f(x) = f̂(0)−1Ey∈Fnpω
fy(x). In our case we show that we can actually get

ω−f(x) ≈ f̂(0)−1Ey∈FSpω
fy(x) for most x’s, where FSp is the set of n-tuples in Fp that are

supported on S. The reason being that wf takes discrete values that are ‘far’ from each
other and the average contribution of the derivatives in directions that are not supported
on S is small (this follows, after some manipulations, from the structure guaranteed by
Theorem 10.4).

Step 4: Using the fact that f⊕a(x) = f(xp−1 ⊕ a) we show that each derivative of f⊕a is
actually a function of a small number of the partial derivatives of f and the variables in S
(Claim 10.9).

Step 5: From the above steps we get that f(xp−1 ⊕ a) can be well approximated by the
variables in S and a small number of derivatives fz(x

p−1 ⊕ a). In the last step of the proof
we show that we can actually replace the variables in {xi : i ∈ S} with {xp−1

i ⊕ a : i ∈ S}.
From this we shall conclude that f can be well approximated, with respect to the shifted p-
biased distribution, by (a function of) a small number of its derivatives and the variables in S.

We now go to the formal proof according to the steps sketched above.

7The function C(·, ·) is defined in the statement of Theorem 10.4.

156



www.manaraa.com

10.5.1 Steps 1 and 2: finding structure in the Fourier spectrum

We start with an easy claim regarding Fourier coefficients of distributions. Abusing nota-
tions, given a distribution D ⊆ Fp we identify it with the function D : Fp → [0, 1] in the

following way D(y) = Prx∈D[x = y]. Notice that under this definition D̂(0) = 1/p and in
general,8 D̂(t) = Ex∈Fp [D(x) · ω−t·x] = 1

p
Ex∈D[ω−t·x].

Claim 10.6. Let D ⊂ Fp be a distribution which is ε-far from uniform. Then there exists
some t ∈ Fp \ 0 such that

p · D̂(t) = Ex∈D[ω−t·x] ≥ ε · p−1/2 .

Proof. Let U denote the uniform distribution on Fp. We have

4ε2 ≤ 4 · sd(D,U)2 =

∑
t∈Fp

|Pr[D = t]− Pr[U = t]|

2

≤ p2Et∈Fp [|Pr[D = t]− Pr[U = t]|2] = p2
∑
t∈Fp

|D̂(t)− Û(t)|2,

where the last equality follows from the Parseval identity. As Û(t) = 0 for t 6= 0, and
D̂(0) = Û(0) = 1/p we get ∑

t∈Fp\0

|D̂(t)|2 ≥ 4ε2/p2,

hence there is some t ∈ Fp \ 0 such that |D̂(t)| ≥
√

4
p−1

ε/p ≥ ε · p−3/2.

We obtain the following corollary.

Corollary 10.3. If the distribution f(Up ⊕ a) is ε-far from uniform then there is some
0 6= t ∈ Fp such that

Ex∈Up⊕a[ωt·f(x)] ≥ ε · p−1/2 .

Note that we can assume w.l.o.g that t = 1. Indeed, let f ′ = t ·f(x). We shall prove that
there is a function g′ : {0, 1}n → Fp such that Prx∈Up⊕a[g

′(x) 6= f ′(x)] ≤ δ and bitrankd(g
′) ≤

c + pc. Setting g(x) = t−1 · g′(x) we get the required polynomial for f . Thus from now on
we assume that t = 1, i.e. that

Ex∈Up⊕a[ωf(x)] ≥ ε · p−1/2 .

Let f⊕a : Fnp → Fp be defined as f⊕a(x) = f(xp−1 ⊕ a). Since the distribution of xp−1 ⊕ a
for uniform x ∈ Fnp is exactly Up ⊕ a we get

Ex∈Fnp [ωf
⊕a(x)] ≥ ε · p−1/2 .

Let γ = δε2/p2, for some δ > 0. As f⊕a(x) is a polynomial of degree at most (p− 1)(d+ 1),
Theorem 10.4 implies that there exists a subset S ⊂ [n] of size |S| ≤ C((p − 1)(d + 1), γ)
such that ∑

α∈FSp \0

|f̂⊕a(α)|2 ≤ γ . (10.2)

8When speaking of distributions we do not consider the function ωD as we do with polynomials.
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10.5.2 Step 3: approximating f⊕a by a few derivatives

Next, we show that the function f⊕a(x) can be well approximated by a small set of its
derivatives. We start with some definitions and a simple yet useful equality. For a subset
S ⊂ [n] let FSp denote the set of vectors v ∈ Fnp which are supported on S, that is,

FSp = {v ∈ Fnp : vi = 0 ∀i /∈ S} .

Similarly let F S
p denote the set of vectors supported on S = [n] \ S. For x ∈ Fnp let xS ∈ FSp

denote the part of x which is supported on S, and xS the part of x supported on [n] \ S.

Claim 10.7. For any function h : Fnp → Fp and S ⊆ [n] we have

Ex∈Fnp ,y∈FSp [ωhy(x)] =
∑
α∈FS̄p

|ĥ(α)|2 .

Proof. Using the Fourier decomposition ωh(x) =
∑

α∈Fnp
ĥ(α)ω〈α,x〉 we get

Ex∈Fnp ,y∈FSp [ωhy(x)] = Ex∈Fnp ,y∈FSp [ωh(x+y)−h(x)]

= Ex∈Fnp ,y∈FSp
∑

α,β∈Fnp

ĥ(α)ĥ(β)ω〈α,x+y〉−〈β,x〉

=
∑

α,β∈Fnp

ĥ(α)ĥ(β)
(
Ex∈Fnpω

〈α−β,x〉) (Ey∈FSpω〈α,y〉)
=

∑
α∈Fnp :αS=0

|ĥ(α)|2 =
∑
α∈FSp

|ĥ(α)|2 .

We next show that a function h that has a high bias and that satisfy that
∑

α∈FSp \0
|ĥ(α)|2

is small can be well approximated by its derivatives in directions from FSp . The proof is based
on the idea described in Step 3 above.

Claim 10.8. Let h : Fnp → Fp be a function such that |Ex∈Fnp [ωh(x)]| ≥ ε. Let δ > 0 be an

error parameter, and assume there is a subset S ⊂ [n] such that
∑

α∈FSp \0
|ĥ(α)|2 ≤ γ for

γ = δε2/p2. Then h can be approximated, on a 1 − δ fraction of Fnp , by a function of its

derivatives in directions supported on S. That is, there exists a function Γ : Fp|S|p → Fp such
that

Pr
x∈Fnp

[h(x) 6= Γ({hy(x) : y ∈ FSp })] ≤ δ.

Proof. Let ĥ(0) = Ex∈Fnp [ωh(x)]. By the assumption in the claim, |ĥ(0)| ≥ ε. Define φ(x) =

ĥ(0)−1Ey∈FSpω
hy(x). We will show that φ(x) can be used to compute h(x) on most of Fnp .

Define ∆(x) = |ω−h(x) − φ(x)|. Note that the minimal distance between different p-th roots
of unity, i.e. distinct elements in {ωt : t ∈ Fp}, is given by |1− ω| = 2 sin(π

p
) ≥ 2/p. We will
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show that for most x ∈ Fnp we have ∆(x) < 1/p, and hence we can deduce ω−h(x) uniquely
(and therefore h(x)) given φ(x). To achieve this we shall bound Ex∈Fnp [∆(x)2] and then use
Markov’s inequality.

Ex∈Fnp [∆(x)2] = Ex∈Fnp [(ω−h(x) − φ(x))(ω−h(x) − φ(x))] =

Ex∈Fnp ,y,z∈FSp [(ω−h(x) − ĥ(0)−1ωhy(x))(ωh(x) − ĥ(0)−1ω−hz(x))] =

Ex∈Fnp ,y,z∈FSp [ω−h(x)+h(x) − ĥ(0)−1ωhy(x)+h(x) − ĥ(0)−1ω−hz(x)−h(x) + |ĥ(0)|−2ωhy(x)−hz(x)] =

Ex∈Fnp ,y,z∈FSp [1− ĥ(0)−1ωh(x+y) − ĥ(0)−1ω−h(x+z) + |ĥ(0)|−2ωh(x+y)−h(x+z)] =

Ex∈Fnp ,y∈FSp [1− 1− 1 + |ĥ(0)|−2ωh(x+y)−h(x)] =

Ex∈Fnp ,y∈FSp [−1 + |ĥ(0)|−2
∑
α∈FSp

|ĥ(α)|2]

where the last equality hollows from Claim 10.7. We thus have

Ex∈Fnp [∆(x)2] = |ĥ(0)|−2
∑

α∈FSp \0

|ĥ(α)|2 ≤ γ

ε2
.

By Markov’s inequality we obtain that

Pr
x∈Fnp

[∆(x) ≥ 1/p] = Pr
x∈Fnp

[∆(x)2 ≥ 1/p2] ≤
Ex∈Fnp [∆(x)2]

1/p2
≤ p2γ

ε2
= δ.

We now define Γ : Fp|S|p → Fp as the value of h(x) for which |φ(x) − ω−h(x)| is minimized
(breaking ties arbitrarily). Since φ(x) depends only on {hy(x) : y ∈ FSp } so does Γ and, by
the argument above, as long as ∆(x) < 1/p we know that Γ(x) = h(x). Since Pr[∆(x) ≥
1/p] ≤ δ, we conclude that

Pr
x∈Fnp

[h(x) 6= Γ({hy(x) : y ∈ FSp })] ≤ δ .

From Equation (10.2) and Claim 10.8 we obtain the following corollary.

Corollary 10.4. Let f, a, ε be as in the statement of Theorem 10.6. Then, for every δ > 0
there is a function Γ1 : Fp|S|p → Fp and a set S ⊂ [n], of size |S| ≤ C((p− 1)(d+ 1), δε2/p2),
such that

Pr
x∈Fnp

[f⊕a(x) 6= Γ1({f⊕ay (x) : y ∈ FSp })] ≤ δ .

10.5.3 Step 4: ‘fixing’ the derivatives

We now show that we can replace the derivatives of f⊕a(x) in Corollary 10.4 by derivatives
of f itself.
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Claim 10.9. For any fixed y ∈ FSp we have that (f⊕a)y(x) = f⊕a(x+y)−f⊕a(x) is determined
by the variables {xi : i ∈ S} and the derivatives of f supported on S when evaluated on

xp−1 ⊕ a. Namely, for every y ∈ FSp there is a function Ψ(y) : F|S|+p
|S|

p → Fp such that for
every x ∈ Fnp

(f⊕a)y(x) = Ψ(y)({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) .

Proof. Fix x ∈ Fnp . Let w ∈ Fnp be defined by the equation w = ((x+ y)p−1⊕ a)− (xp−1⊕ a)
(interpreted as a pointwise equality). Note that as y ∈ FSp we also have that w ∈ FSp , i.e.
wi = 0 for all i /∈ S. Moreover, note that we can compute wS (hence also w) as a fixed
function (depending on y, a) of {xi : i ∈ S}. Hence we get

(f⊕a)y(x) = f((x+y)p−1⊕a)−f(xp−1⊕a) = f((xp−1⊕a)+w)−f(xp−1⊕a) = fw(xp−1⊕a) .

Consequently, (f⊕a)y(x) is a function of {xi : i ∈ S} and {fz(xp−1 ⊕ a) : z ∈ FSp }.

Combining Corollary 10.4 and Claim 10.9 we obtain the following corollary.

Corollary 10.5. Let f, a, ε be as in the statement of Theorem 10.6. Then, for every δ > 0

there is a set S ⊂ [n], of size |S| ≤ C((p−1)(d+1), δε2/p2), and a function Γ2 : Fp
|S|+|S|
p → Fp

such that

Pr
x∈Fnp

[f(xp−1 ⊕ a) 6= Γ2({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })] ≤ δ .

10.5.4 Step 5: putting it all together

We now prove Theorem 10.6. Given Corollary 10.5 we basically have to complete Step 5 in
order to conclude the proof. That is, we have to show that f can be well approximated by
a function of a small number of its derivatives and the variables in S.

Proof of Theorem 10.6. By Corollary 10.5 there is a function Γ2 : Fp
|S|+|S|
p → Fp such that

Pr
x∈Fnp

[
f(xp−1 ⊕ a) 6= Γ2({xi : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .

Thus, we have a function approximating f on Boolean inputs (under the distribution xp−1⊕a)
which depends on {xi : i ∈ S}. We will next show how these variables can be replaced by
variables of the form xp−1

i ⊕ ai, for i ∈ S. Let u ∈ (Fp \ 0)n be chosen uniformly at random.
Observe that the joint distribution of (xp−1, x) over uniform x ∈ Fnp is identical to the joint
distribution of (xp−1, xp−1 · u), where the product xp−1 · u is taken element-wise. It follows
that

Pr
x∈Fnp ,u∈(Fp\0)n

[
f(xp−1 ⊕ a) 6= Γ2({(xi)p−1 · ui : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .

By averaging, there exist a value u∗ ∈ (Fp \ 0)n such that

Pr
x∈Fnp

[
f(xp−1 ⊕ a) 6= Γ2({(xi)p−1 · u∗i : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })

]
≤ δ .
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Notice that given a, u∗ we can compute xp−1
i · u∗i as a function of xp−1

i ⊕ ai. Hence, we can

define a function Γ : Fp
|S|+|S|
p → Fp such that

Γ({(xi)p−1 ⊕ ai : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) =

Γ2({(xi)p−1 · u∗i : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp }) .

Therefore,

Pr
x∈Fnp

[f(xp−1 ⊕ a) 6= Γ({xp−1
i ⊕ ai : i ∈ S}, {fz(xp−1 ⊕ a) : z ∈ FSp })] ≤ δ .

As the distribution of xp−1 ⊕ a, for uniform x ∈ Fnp , is the same as Up ⊕ a, we conclude that

Pr
x∈Up⊕a

[f(x) 6= Γ({xi : i ∈ S}, {fz(x) : z ∈ FSp })] ≤ δ .

Set g(x) = Γ({xi : i ∈ S}, {fz(x) : z ∈ FSp }). Clearly, bitrankd(g) ≤ |S|+p|S|. This completes
the proof of the theorem.

We now give the proof of Theorem 10.5.

Proof of Theorem 10.5. Combining Claim 10.1, Theorem 10.6 and Lemma 10.3 we get that
there is a distribution G on functions such that for c = C((p − 1)(d + 1), δε2/4p3) it holds
that bitrankd(G) ≤ O(2(p−1)(d+1)pc) and Prh∈G[f(x) = h(x)] ≥ 1 − (2(p−1)(d+1)+1 − 1)δ. A
simple averaging argument implies that there is some h ∈ G such that Prx∈{0,1}n [f(x) =
h(x)] ≥ 1− (2(p−1)(d+1)+1 − 1)δ.

10.6 The Fourier spectrum of low degree polynomials

In this section we give the proof of Theorem 10.4. We start by defining the notion of an
S-correlated distribution over Fnp , for a subset S ⊂ [n]. We recall that for x ∈ Fnp we denote
by xS ∈ FSp the restriction of x to coordinates in S, and we denote the complement of S by
S̄ = [n] \ S.

Definition 10.5. Let S ⊂ [n]. The S-correlated distribution is a joint distribution over
pairs (X, Y ) ∈ Fnp × Fnp defined as follows. Choose XS̄ = YS̄ uniformly in FS̄p , and choose
independently and uniformly XS, YS ∈ FSp . We denote the S-correlated distribution (X, Y )
by DS. For f, g : Fnp → Fp and S ⊂ [n], we define the S-correlation of f and g to be

∆S(f, g) =
∑

α∈Fnp :αS=0,α 6=0

f̂(α)ĝ(α) .

Note that an equivalent definition of DS is to first sample X ∈ Fnp uniformly, then to set
Y = X and finally to resample YS. We now restate Theorem 10.4 in terms of ∆S.

Theorem 10.7 (Theorem 10.4, restated). Let f : Fnp → Fp be a degree d polynomial. For

every ε > 0 there exists S ⊂ [n], of size |S| ≤ C(d, ε) = O(1/ε)O(4d), such that ∆S(f, f) ≤ ε.
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Before giving the formal proof we explain the idea behind it. We will prove the theorem
by induction on the degree. The case of linear polynomials will be easy to handle by a direct
calculation. For a general degree d we will use the following useful claims.

Claim 10.10. Let A be any linear subspace of Fnp . For every f : Fnp → Fp and S ⊂ [n] it

holds that ∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2].

Claim 10.11. Let f : Fnp → Fp. Let A be a random linear subspace of Fnp of dimension r
(i.e. A is picked at random amongst all r-dimensional subspaces of Fnp). Then

EA
[
Ea∈A[|f̂a(0)|2]

]
≤ 1

pr
+ max

α
|f̂(α)|2 ,

where EA means that we are averaging over a random choice of A.

These claims indicate that we have to consider two cases.

Case 1. All the Fourier coefficients of f are small: In this case, the claims above imply
that if we set r to a large enough value and pick a random r-dimensional subspace A then
setting S be the union of the corresponding sets for fa, for a ∈ A, we get the required result
(using the induction hypothesis).

Case 2. Some Fourier coefficient of f is large: In this case we first approximate f by a
function of a small number of (linear shifts of) its partial derivatives. A simple calculation
then gives that for some k, δ∗ and σ we have

∆S(f, f) ≤ 1

kδ∗

k∑
i=1

|∆S(h̃yi , f)|+ 2σ ,

where {h̃yi}ki=1 is a set of (shifted) derivatives used to approximate f . Observing that for
any g and S ⊆ S ′ it holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 ,

we complete the proof for this case as well by picking S ′ to be the union of the corresponding
sets for the polynomials h̃yi .

10.6.1 Proofs of two useful claims

Following the proof outline above we start by proving Claims 10.10 and 10.11. As a first
step we prove the following lemma.

Lemma 10.4. Let f, g : Fnp → Fp. Then for any S ⊂ [n] it holds that

∆S(f, g) = E(x,y)∈DS [ωf(x)−g(y)]− Ex∈Fnp [ωf(x)]Ey∈Fnp [ωg(y)]

and for every S ′ ⊇ S it holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 .
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Proof. Recall that f̂(0) = E[ωf(x)] and similarly for g. Calculating we get,∑
α:αS=0

f̂(α)ĝ(α) =
∑

α:αS=0

(Exωf(x)ω−〈x,α〉)(Eyω−g(y)ω〈y,α〉)

=
1

p2n

∑
x,y

ωf(x)−g(y)
∑

α:αS=0

ω〈y−x,α〉

=
1

p2n

∑
xS̄=yS̄

pn−|S|ωf(x)−g(y)

= E(x,y)∈DS [ωf(x)−g(y)] .

Hence, ∆S(f, g) = E(x,y)∈DS [ωf(x)−g(y)] − f̂(0)ĝ(0). To show the second claim we apply the
Cauchy-Schwarz inequality,

|∆S′(f, g)| =

∣∣∣∣∣∣
∑

α 6=0,αS′=0

f̂(α)ĝ(α)

∣∣∣∣∣∣ ≤
 ∑
α 6=0,αS′=0

|f̂(α)|2
1/2 ∑

α 6=0,αS′=0

|ĝ(α)|2
1/2

≤

( ∑
α6=0,αS=0

|f̂(α)|2
)1/2( ∑

α 6=0,αS=0

|ĝ(α)|2
)1/2

= (∆S(f, f))1/2(∆S(g, g))1/2 .

We now give the proofs of Claims 10.10 and 10.11.

Proof of Claim 10.10. By Lemma 10.4 we have

∆S(f, f) = E(x,y)∈DS [ωf(x)−f(y)]− |f̂(0)|2 ≤ E(x,y)∈DS [ωf(x)−f(y)] .

For any fixed a ∈ A, the distribution {(x+ a, y + a) : (x, y) ∈ DS} is identical to DS. So we
can express ∆S(f, f) as follows,

∆S(f, f) ≤ Ea∈AE(x,y)∈DS [ωf(x+a)−f(y+a)] .

Applying the Cauchy-Schwarz inequality (and using the fact that A is a linear subspace) we
get

∆S(f, f)2 ≤ E(x,y)∈DS
[
|Ea∈A[ωf(x+a)−f(y+a)]|2

]
= E(x,y)∈DS

[
(Ea∈A[ωf(x+a)−f(y+a)])(Ea′∈A[ω−f(x+a′)+f(y+a′)])

]
= Ea,a′∈AE(x,y)∈DS

[
ωf(x+a)−f(x+a′)ωf(y+a′)−f(y+a)

]
= Ea,a′∈AE(x′,y′)∈DS

[
ωf(x′+a−a′)−f(x′)ωf(y′)−f(y′+a−a′)

]
= Ea∈AE(x,y)∈DS [ωfa(x)−fa(y)]

= Ea∈A[∆S(fa, fa) + |f̂a(0)|2] .
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Proof of Claim 10.11. We begin by showing an identity on Ea∈A[|f̂a(0)|2] for any subspace
A.

Claim 10.12. For any function f : Fnp → Fp and any subspace A ⊂ Fnp

Ea∈A[|f̂a(0)|2] =
∑

β∈Fnp ,γ∈A⊥
|f̂(β)|2|f̂(β + γ)|2,

where A⊥ is the dual space of A.

Proof. Using the Fourier decomposition formula, the R.H.S of the above expression is∑
β∈Fnp ,γ∈A⊥

(Ex,x′∈Fnp [ωf(x)−f(x′)ω〈β,x
′−x〉])(Ey,y′∈Fnp [ωf(y)−f(y′)ω〈β+γ,y′−y〉])

which is equivalent to

∑
γ∈A⊥

Ex,x′,y,y′∈Fnp

ωf(x)−f(x′)+f(y)−f(y′)ω〈γ,y
′−y〉

∑
β∈Fnp

ω〈β,x
′−x+y′−y〉

 .

Considering the inner sum over β, the above expression can be simplified as

1

p3n

∑
x−x′=y′−y

ωf(x)−f(x′)+f(y)−f(y′)
∑
γ∈A⊥

ω〈γ,y
′−y〉 .

Now the inner sum over γ is nonzero only when y′−y ∈ A. Denote a = y′−y ∈ A. Recalling
that we sum over x− x′ = y′ − y = a, we can further simplify the above expression as

|A⊥|
p3n

∑
a∈A

∑
x′,y∈Fnp

ωf(x′+a)−f(x′)+f(y)−f(y+a) = Ea∈A[|f̂a(0)|2] .

We now have that

Ea∈A[|f̂a(0)|2] =
∑

β∈Fnp ,γ∈A⊥
|f̂(β)|2|f̂(β + γ)|2 =

∑
β∈Fnp ,α∈Fnp

|f̂(β)|2|f̂(α)|2χA⊥(α− β) ,

where χA⊥ is the characteristic function of A⊥. Let A be a random subspace of dimension
r. The probability for α 6= β that (α− β) ∈ A⊥ is 1/pr. Since

∑
α |f̂(α)|2 = 1 by Parseval’s

identity, we obtain that

EA
[
Ea∈A[|f̂a(0)|2]

]
=

∑
β 6=α∈Fnp

|f̂(β)|2|f̂(α)|2EA[χA⊥(α− β)] +
∑
α∈Fnp

|f̂(α)|4

≤ 1

pr
+
∑
α∈Fnp

|f̂(α)|4 ≤ 1

pr
+ max

α
|f̂(α)|2 .
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10.6.2 Concluding the proof

We now have all the required ingredients to prove Theorem 10.7.

Proof of Theorem 10.7. The proof is by induction on d. The base case is d = 1. Let
f(x) =

∑n
i=1 aixi be any linear polynomial. Consider S = {i} such that ai 6= 0. Then

for any α ∈ Fnp such that αS = 0 we get f̂(α) = Exi∈Fp [ωaixi ]
∏

j 6=i Exj∈Fp [ω(aj−αj)xj ] = 0.

Hence,
∑

α:αS=0 |f̂(α)|2 = 0 and the claim is proved.
By induction hypothesis, let the result be true for any degree ≤ d − 1 polynomial. As

outlined above, the proof proceeds by considering two cases, whether f has some large
Fourier coefficient or not.

Case 1: Assume that |f̂(α)| ≤ δ∗, for all α ∈ Fnp , for an appropriate choice of δ∗ (that
we will suitably fix later). Let εd = ε. By Claim 10.12 we get that for any S ⊂ [n] and a
subspace A ⊆ Fnp

∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2] .

Notice that for each a ∈ A, deg fa ≤ d− 1. Hence, by induction hypothesis, for each a ∈ A,
there exist Sa of size C(d− 1, εd−1) such that ∆Sa(fa, fa) ≤ εd−1 (for some εd−1 that will be

soon determined). Let A be a linear subspace of dimension r that minimizes Ea∈A[|f̂a(0)|2].
Consider S = ∪a∈ASa. Claim 10.11 implies that

∆S(f, f)2 ≤ εd−1 +
1

pr
+ max

α
|f̂(α)|2 .

Now it is enough to choose r, εd−1 and δ∗ such that εd−1 + 1
pr

+ (δ∗)2 ≤ ε2d. Also, notice that

|S| = C(d, εd) ≤ prC(d− 1, εd−1).

Case 2: Let β be a Fourier coefficient such that |f̂(β)| ≥ δ∗. Set δ = f̂(β). Let h(x) =
f(x) − 〈x, β〉. Then the bias of −h(x) is Ex∈Fnp [ω−h(x)] = δ. Notice that for every x ∈ Fnp
we have ωh(x)Ey[ω−h(x+y)] = Ey[ω−hy(x)]. As for every fixed x we have Ey[ω−h(x+y)] = δ it is
clear that we can get the following decomposition of f(x)

ωf(x) = ω〈x,β〉 · ωh(x) = ω〈x,β〉 · 1

δ
Ey[ω−hy(x)] =

1

δ
Ey[ω〈x,β〉−hy(x)] .

Define h̃y(x) = 〈x, β〉 − hy(x). Notice that since h(x) has degree d ≥ 2 we have deg(h̃y) ≤
d − 1. Now we can expect that if we sample enough y’s uniformly and independently at

random, and take the average of the corresponding ωh̃y(x), then we can get a good estimate
of ωf(x). In particular for a parameter σ ∈ (0, 1) to be determined later, we find k such that
the following holds

Ex,y1,...,yk∈Fnp [|ωf(x) − 1

δk

k∑
i=1

ωh̃yi (x)|] ≤ σ.

By simple application of Chebyshev’s inequality, we estimate the parameter k.
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Claim 10.13. To get an approximation Ex,y1,...,yk∈Fnp [|ωf(x) − 1
δk

∑k
i=1 ω

h̃yi (x)|] ≤ σ, it is
enough to take k = O(|δ|−3σ−3).

Proof. It is enough to choose k such that E[|<(ωf(x) − 1
δk

∑k
i=1 ω

ĥyi (x))|] ≤ σ/2, and

E[|Img(ωf(x) − 1
δk

∑k
i=1 ω

ĥyi (x))|] ≤ σ/2. Let Yi = <(1
δ
ωh̃yi (x)). Then Eyi [Yi] = <(ωf(x)).

It is clear that Var(Yi) ≤ 1
|δ|2 . Hence, by Chebyshev’s inequality we get that

Pr(|<(ωf(x))− 1

k

k∑
i=1

Yi| ≥
σ

4
) ≤ 16

|δ|2kσ2
.

Therefore, as always |<(ωf(x)) − 1
k

∑k
i=1 Yi| ≤ 1 + δ−1 ≤ 2δ−1 we get that E[|<(ωf(x)) −

1
k

∑k
i=1 Yi|] ≤ σ/2 for k ≥ 128

|δ|3σ3 . The imaginary part can be approximated similarly.

Fix {yi}i∈[k] in such a way that Ex∈Fnp [|ωf(x) − 1
δk

∑k
i=1 ω

h̃yi (x))|] ≤ σ. Let F (x) =
1
kδ

∑k
i=1 ω

h̃yi (x). As Ex∈Fnp [|ωf(x) − F (x)|] ≤ σ we can upper bound ∆S(f, f) as follows

∆S(f, f) = E(x,y)∈DS [ωf(x)−f(y)]− Ex∈Fnp [ωf(x)] · Ey∈Fnp [ωf(y)]

≤ |E(x,y)∈DS [(ωf(x) − F (x))ω−f(y)]− Ex∈Fnp [ωf(x) − F (x)] · Ey∈Fnp [ωf(y)]|

+|E(x,y)∈DS [F (x)ω−f(y)]− Ex∈Fnp [F (x)] · Ey∈Fnp [ωf(y)]|
≤ 2σ + |E(x,y)∈DS [F (x)ω−f(y)]− (Ex[F (x)])(Ey[ω−f(y)])|

≤ 2σ +
1

kδ

k∑
i=1

|E(x,y)∈DS [ωh̃yi (x)−f(y)]− (Ex[ωh̃yi (x)])(Ey[ω−f(y)])|

≤ 2σ +
1

kδ∗

k∑
i=1

|∆S(h̃yi , f)|.

As deg(h̃yi) ≤ d− 1 we get, by the induction hypothesis, that for each h̃yi there exists a set

Si, of size C(d − 1, εd−1), such that ∆Si(h̃yi , h̃yi) ≤ εd−1. Consider S = ∪ki=1Si. Obviously,
|S| ≤ kC(d− 1, εd−1). Lemma 10.4 implies that

|∆S(h̃yi , f)| ≤ (∆Si(h̃yi , h̃yi))
1/2(∆Si(f, f))1/2 ≤ (∆Si(h̃yi , h̃yi))

1/2 ≤ ε
1/2
d−1 .

In order to achieve ∆S(f, f) ≤ εd we need to fix the parameters δ∗, εd−1, k, σ so that
1
δ∗
ε

1/2
d−1 + 2σ ≤ εd.

We now show how to pick the parameters adequately. We need to satisfy both εd−1 + 1
pr

+

(δ∗)2 ≤ ε2d and 1
δ∗
ε

1/2
d−1 + 2σ ≤ εd. Fix σ = εd

4
and δ∗ = εd

2
. Then it is enough to choose εd−1 =

O(ε4d) and r = logp(ε
2
d/4). We now estimate |S|. Recall that |S| ≤ max(pr, k)C(d − 1, εd−1)

where k = O(|δ∗|−3σ−3). This yields the following bound

|S| ≤ O(ε−6
d )C(d− 1,Ω(ε4d))

Solving the recurrence for C(d, ε) we get that C(d, ε) ≤ O(ε)O(4d). This completes the proof
of the theorem.
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10.7 Conclusions and open problems

We construct efficient and explicit bit-pseudorandom generators for constant degree polyno-
mials over finite fields. These yield pseudorandom generators for CC0[p] which achieve any
small constant error while using only O(log n) random bits. The proof is based on a new
characterization of the Fourier spectrum of low degree polynomials over finite fields.

We state several open problems.

• Construct pseudorandom generators for AC0[p]. The next step, following this work, is
to construct pseudorandom generators for sparse polynomials over Fp (i.e. polynomials
of degree O(log n) with only a polynomial number of monomials). Any such polynomial
can be realized by a depth-2 AC0[p] circuit.

• Generalize our results for CC0[m] for composite m. As a first step, generalize our
results for bit-pseudorandom generators for low degree polynomials over Zm.

• Improve the parameters of Theorem 10.4. For d = 1 it is an easy observation that a
set S of size |S| = 1 suffices. For d = 2, it is not difficult to see that all nonzero Fourier
coefficients of a quadratic polynomial form an affine space and have the same absolute
value. Using this observation one can get a set of size |S| = O(log 1/ε). We do not
have any example of a constant degree polynomial requiring sets of size ω(log 1/ε).

• Improve the dependence of the seed length on ε in Theorem 10.3. Currently, the seed
length is logarithmic in n but a tower of height O(d) in 1/ε.

10.8 Proof for linear polynomials

In this section we give the proof Theorem 10.2. For convenience we repeat it here.

Theorem (Bit-pseudorandom distribution for linear polynomials). Let Fp be a prime finite
field and ε > 0 be an error parameter. Let D ⊂ Fnp be a pseudorandom distribution for
degree p − 1 polynomials over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise independent
distribution for k = O(p3 log 1/ε). Then Dp−1 ⊕K is bit-pseudorandom distribution against
linear polynomials over Fp with error O(ε).

Proof. Let f(x) =
∑n

i=1 aixi be some linear polynomial. Define the weight of f , wt(f), to
be the number of nonzero coefficients in f . We consider two cases. Consider first the case
that wt(f) ≤ k. In such a case any k-wise independent distribution fools f completely. The
distribution Dp−1 ⊕K is k-wise independent, hence it fools f with error 0.

We now move to the second case, where wt(f) > k. We will prove that in this case the
distribution of f(x) is O(ε)-close to the uniform distribution over Fp, both when x ∈ {0, 1}n is
chosen uniformly at random and when we choose x ∈ Dp−1⊕K. Hence these two distributions
are O(ε)-close to each other. In fact, we shall prove a stronger claim: for any fixed v ∈ {0, 1}n,
the distribution of f(x) where x ∈ Dp−1 ⊕ v is O(ε)-close to uniform.

We first note that if X ∈ Fp is a distribution, then Fact 10.1 shows that in order to
prove that X is ε-close to uniform it suffices to prove that for any c ∈ Fp \ 0 it holds that
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E[ωcX ] ≤ ε/
√
p. Since multiplying by c 6= 0 does not change the weight of f , it is enough to

prove that if wt(f) > k then |Ex∈{0,1}n [ωf(x)]| ≤ O(ε) and |Ex∈Dp−1⊕a[ω
f(x)]| ≤ O(ε).

We first prove the claim for uniform inputs. Note that if z ∈ {0, 1} is uniform and a 6= 0,
then ∣∣Ez∈{0,1}[ωaz]∣∣ ≤ 1− Ω(1/p2) .

Therefore, as wt(f) > k we get

∣∣Ex∈{0,1}n [ωf(x)]
∣∣ =

n∏
i=1

∣∣Exi∈{0,1}[ωaixi ]∣∣ ≤ (1− Ω(1/p2))k = O(ε) .

We now move to proving the claim for x ∈ Dp−1 ⊕ v. That is, we wish to prove that

|Ex∈D[ω
∑
ai(x

p−1
i ⊕vi)]| = O(ε) .

Define g : Fnp → Fp as g(x) =
∑
ai(x

p−1
i ⊕ vi). Note that g is a polynomial of degree p− 1,

as xp−1
i ⊕ vi is equal to xp−1

i when vi = 0 and is equal to 1− xp−1
i when vi = 1. Since D is a

pseudorandom distribution for degree p− 1 polynomials with error ε, we get that∣∣Ex∈D[ωg(x)]− Ex∈Fnp [ωg(x)]
∣∣ ≤ ε.

Hence it is enough to prove that
∣∣Ex∈Fnp [ωg(x)]

∣∣ = O(ε). For that end, let y ∈ {0, 1}n be
distributed as follows: y1, . . . , yn are chosen independently such that Pr[yi = vi] = 1/p.
Then, for x ∈ Fnp chosen uniformly at random, the distributions of xp−1 ⊕ v and of y are
identical. Moreover it is straightforward to verify that for any ai 6= 0 we have

|Eyi [ωaiyi ]| ≤ 1− Ω(1/p3) .

The claim now follows as∣∣Ex∈Fnp [ωg(x)]
∣∣ =
∣∣∣Ex∈Fnp [ω

∑
ai(x

p−1
i ⊕vi)]

∣∣∣ =
∣∣Ey[ω∑ aiyi ]

∣∣
=

n∏
i=1

|Eyi [ωaiyi ]| ≤ (1− Ω(1/p3))k = O(ε) .

10.9 Proof of Fact 10.1

For completeness we give the proof of the following well known fact.

Fact (Fact 10.1). Let D1,D2 ⊂ Fkp be two distributions. Assume that for every α ∈ Fkp the

distributions 〈D1, α〉 and 〈D2, α〉 are ε-close. Then D1 and D2 are (pk/2ε)-close.
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Proof of Fact 10.1. We need to bound

sd(D1,D2) = 1
2

∑
x∈Fkp

|Pr[D1 = x]− Pr[D2 = x]| .

By the Cauchy-Schwarz inequality we get

4 · sd(D1,D2)2 ≤ pk
∑
x∈Fkp

|Pr[D1 = x]− Pr[D2 = x]|2 .

Let D̂i : Fkp → C be the Fourier transform of Di, when we think of Di as the function

Di(y) = Prx∈Di [x = y]. In other words, D̂i(α) = Ex∈Fkp [Pr[Di = x]ω−〈x,α〉]. By the Parseval
identity we get that

4 · sd(D1,D2)2 ≤ p2k ·
∑
α∈Fkp

|D̂1(α)− D̂2(α)|2 .

From the assumption that for every α ∈ Fkp the distributions 〈D1, α〉 and 〈D2, α〉 are ε-close
we obtain

|D̂1(α)− D̂2(α)| =
∣∣∣Et∈Fkp [(Pr[〈D1, α〉 = t]− Pr[〈D2, α〉 = t]) · ω−t]

∣∣∣
≤ Et∈Fkp |[Pr[〈D1, α〉 = t]− Pr[〈D2, α〉 = t]]|
≤ 2ε/pk .

Thus we conclude that

4 · sd(D1,D2)2 ≤ p2k
∑
α∈Fkp

(2ε/pk)2 = 4pkε2 .

The bound sd(D1,D2) ≤ pk/2ε now follows.
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Part IV

Coding theory
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Chapter 11

List Size vs. Decoding Radius for
Reed-Muller Codes

The weight distribution and list-decoding size of Reed-Muller codes are studied in this work.
Given a weight parameter, we are interested in bounding the number of Reed-Muller code-
words with a weight of up to the given parameter. Additionally, given a received word and
a distance parameter, we are interested in bounding the size of the list of Reed-Muller code-
words that are within that distance from the received word. In this work, we make a new
connection between computer science techniques used for studying low-degree polynomials
and these coding theory questions. Using this connection we progress significantly towards
resolving both the weight distribution and the list-decoding problems.

Obtaining tight bounds for the weight distribution of Reed-Muller codes has been a long
standing open problem in coding theory, dating back to 1976 and seemingly resistent to the
common coding theory tools. The best results to date are by Azumi, Kasami and Tokura
which provide bounds on the weight distribution that apply only up to 2.5 times the minimal
distance of the code. We provide asymptotically tight bounds for the weight distribution of
the Reed-Muller code that apply to all distances.

List-decoding has both theoretical and practical applications in various fields. To name
a few, hardness amplification in complexity, constructing hard-core predicates from one way
functions in cryptography and learning parities with noise in learning theory.

Many algorithms for list-decoding have the crux of their analysis lying in bounding
the list-decoding size. The case for Reed–Muller codes is similar, and Gopalan, Klivans
and Zuckerman gave a list-decoding algorithm, whose complexity is determined by the
list-decoding size. Gopalan et. al provided bounds on the list-decoding size of Reed–Muller
codes which apply only up to the minimal distance of the code. We provide asymptotically
tight bounds for the list-decoding size of Reed–Muller codes which apply to all distances.

Joint work with Tali Kaufman and Ely Porat.
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11.1 Introduction

The weight distribution of an error correcting code counts, for every given weight param-
eter, the number of codewords with weight bounded by the given parameter. The weight
distribution of a code is the main characteristic of the code, and governs the behavior of the
code, from both theoretical and practical aspects.

Understanding the weight distribution of Reed-Muller codes is a 30-year-old standing
open question in coding theory. The last progress on this question was made by Kasami and
Tokura [KT70] that characterized the codewords of Reed-Muller codes of weight up to twice
the minimal distance of the code, and hence obtained bounds for the weight distribution
that apply till twice the minimal distance of the code. In this work we study the weight
distribution of Reed Muller codes and provide asymptotically tight bounds that apply to all
distances.

The problem of list-decoding an error correcting code is the following: given a received
word and a distance parameter find all codewords of the code that are within the given
distance from the received word. List-decoding is a generalization of the more common
notion of unique decoding in which the given distance parameter ensures that there can
be at most one codeword of the code that is within the given distance from the received
word. The notion of list-decoding has numerous practical and theoretical implications. The
breakthrough results in this field are due to Goldreich and Levin [GL89] and Sudan [Sud97]
who gave efficient list decoding algorithms for the Hadamard code and the Reed-Solomon
code. See surveys by Guruswami [Gur04] and Sudan [Sud00] for further details. In complex-
ity, list-decodable codes are used to perform hardness amplification of functions [STV99].
In cryptography, list-decodable codes are used to construct hard-core predicates from one
way functions [GL89]. In learning theory, list decoding of Hadamard codes implies learning
parities with noise [KM93].

In this work we study the question of list-decoding Reed-Muller codes. Specifically, we
are interested in bounding the list sizes obtained for different distance parameters for the
list-decoding problem. Our work provides asymptotically tight bounds that apply to all
distances. The improved bounds, imply improved algorithms for list-decoding Reed-Muller
codes.

Our results are obtained by making a new connection between computer science tech-
niques used for studying low-degree polynomials and the discussed coding theory questions.
Using this connection we manage to progress significantly towards resolving these two im-
portant open problems.

Our proofs are technically relatively simple. We view this as evidence to the importance
of this new connection, since these were considered as open problems, resistent to the more
common coding theory tools. We view this as the main innovation of our work.

11.1.1 Reed–Muller codes

Reed-Muller codes are a very fundamental and well studied family of codes. RM(n, d) is a
linear code, whose codewords f ∈ RM(n, d) : Fn2 → F2 are evaluations of polynomials in n
variables of total degree at most d over F2. In this work we study the code RM(n, d) when
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d� n, and are interested in particular in the case of constant d.
The following facts regarding RM(n, d) are straight-forward: It has block length of 2n,

dimension
∑

i≤d
(
n
i

)
and minimum relative distance 2n−d

2n
= 2−d.

11.1.2 Weight distribution of Reed-Muller codes

We now formally define the weight distribution of a code, and discuss previous known bounds
for the weight distribution of Reed-Muller codes.

Definition 11.1 (Relative weight). The relative weight of a function/codeword f : Fn2 → F2

is the fraction of non-zero elements,

wt(f) =
1

2n
|{x ∈ Fn2 : f(x) = 1}|

Definition 11.2 (Accumulative weight distribution). The accumulative weight distribution
of RM(n, d) at a relative weight α is the number of codewords up to this weight, i.e.

A(α) = |{p ∈ RM(n, d) : wt(p) ≤ α}|

where 0 ≤ α ≤ 1.

It is well-known that for any p ∈ RM(n, d) which is not identically zero, wt(p) ≥ 2−d.
Thus, A(2−d−ε) = 1 for any ε > 0. Kasami and Tokura [KT70] characterized the codewords
in RM(n, d) of weight up to twice the minimal distance of the code (i.e up to distance 21−d).
Based on their characterization one could conclude the following.

Corollary 11.1 (Corollary 10 in [GKZ08]).

A(21−d − ε) ≤ (1/ε)2(n+1)

Corollary 11.1 and simple lower bounds (which we show later, see Lemma 11.5) show
that A(α) = 2Θ(n) for α ∈ [2−d, 21−d − ε] for any ε > 0 (and constant d).

11.1.3 List-decoding size of Reed-Muller codes

We now formally define the list-decoding size of a code, and discuss previous known bounds
for the list-decoding size of Reed-Muller codes. Moreover we discuss known list-decoding
algorithms for Reed-Muller codes. We start with the following definition.

Definition 11.3 (Relative distance between two functions). The relative distance between
two functions f, g : Fn2 → F2 is defined as

dist(f, g) = Px∈Fn2 [f(x) 6= g(x)]

Our work focuses on understanding the asymptotic growth of the list size in list-decoding
of Reed-Muller codes, as a function of the distance parameter. Specifically we are interested
in obtaining bounds on the following.
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Definition 11.4 (List-decoding size). For a function f : Fn2 → F2 let the ball at relative
distance α around f be

B(f, α) = {p ∈ RM(n, d) : dist(p, f) ≤ α}

The list-decoding size of RM(n, d) at distance α, denoted by L(α), is the maximal size of
B(f, α) over all possible functions f , i.e.

L(α) = max
f :Fn2→F2

|B(f, α)|

In a recent work, Gopalan, Klivans and Zuckerman [GKZ08] proved that for distances
up to the minimal distance of the code, the list-decoding size of Reed-Muller codes remains
constant.

Theorem 11.1 (Theorem 11 in [GKZ08]).

L(2−d − ε) ≤ O
(
(1/ε)8d

)
Their result of bounding the list-decoding size of Reed-Muller codes is inherently limited

to work up to the minimum distance of the code, since it uses the structural theorem of
Kasami and Takura on Reed-Muller codes [KT70], which implies a bound on the weight
distribution of Reed-Muller codes that works up to twice the minimum distance of the code.

Additionally, the work of [GKZ08] has developed a list-decoding algorithm for RM(n, d)
whose running time is polynomial in the worst list-decoding size and in the block length of
the code.

Theorem 11.2 (Theorem 4 in [GKZ08]). Given a distance parameter α and a received word
R : Fn2 → F2, there is an algorithm that runs in time poly(2n, L(α)) and produces a list of
all p ∈ RM(n, d) such that dist(p,R) ≤ α.

Since Gopalan et al. could obtain non-trivial bounds on the list-decoding size for distance
parameter α that is bounded by the minimum distance of the Reed-Muller code, their algo-
rithm running time could be analyzed only for α that is less than the minimum distance of
the code. This supports our earlier statement, that the crux of the analysis of list-decoding
algorithms is in bounding the list-decoding size.

11.1.4 Our Results

The weight distribution of RM(n, d) codes beyond twice the minimum distance was widely
open prior to our work. See e.g. Research Problem (15.1) in [MS83] and the related discussion
in that chapter. In this work we provide asymptotic bounds for the weight distribution of
RM(n, d) that applied for all weights 2−d ≤ α ≤ 1/2. We state now our results for constant
d, where the notation O(·),Ω(·),Θ(·) hides constants depending only on d. Our first main
result gives exact boundaries on the range of α for which A(α) = 2Θ(n`), for any ` = 1, 2, ..., d,
showing there are ”cut-off distances”, at which the accumulative weight distribution jumps
from 2Θ(n`) to 2Θ(n`+1).
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Theorem 11.3 (First main theorem - accumulative weight distribution). Let 1 ≤ ` ≤ d− 1
be an integer, and let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ A(α) ≤ (1/ε)O(n`)

and A(α) = 2Θ(nd) for any α ≥ 1/2.

We also address the more general problem of bounding the list-decoding size. Gopalan et
al. [GKZ08] left as an open problem the question of bounding the list-decoding size of Reed-
Muller codes beyond the minimal distance. We give tight bounds on the list-decoding size
of Reed–Muller codes that apply to all distances. In fact, we show that the behavior of the
list-decoding size is asymptotically identical to that of the accumulative weight distribution.

Theorem 11.4 (Second main theorem - list-decoding size). Let 1 ≤ ` ≤ d−1 be an integer,
and let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ L(α) ≤ (1/ε)O(n`)

and L(α) = 2Θ(nd) for any α ≥ 1/2.

Using Theorem 11.4 and Theorem 11.2, we obtain the following algorithmic result for
list-decoding Reed-Muller codes.

Theorem 11.5 (List-decoding algorithm). Let R : Fn2 → F2 be a received word. Let α ∈
[2`−d−1, 2`−d − ε] be a required distance parameter, where 1 ≤ ` ≤ d− 1 is integer and ε > 0.
There exists an algorithm that runs in time (1/ε)O(n`) and produces a list of all p ∈ RM(n, d)
such that dist(p,R) ≤ α.

Observe that Theorems 11.3 and 11.4 are asymptotically tight even for sub-constant
values of ε. The smallest possible value is ε = 2−n, and indeed for α = 2`−d − ε we get that
both A(α) and L(α) are upper bounded by (1/ε)O(n`) = 2O(n`+1), while for α = 2`−d they are
lower bounded by 2O(n`+1).

11.1.5 Techniques

Our results are obtained by making a new connection between computer science techniques
used for studying low-degree polynomials and weight distribution and list-decoding size of
Reed-Muller codes. Evidence of the importance of this new connection is the technical
simplicity of our proofs that solve these well-known open problems. Following is a detailed
discussion of our techniques.

The bounds on the accumulative weight distribution of the Reed-Muller code are obtained
using the following novel strategy. We study the structure of functions f : Fn2 → F2 based
on their discrete derivatives. The discrete derivative of f in direction y ∈ Fn2 is given by

fy(x) = f(x+ y) + f(x).

The k-iterated derivative of f in directions y1, . . . , yk ∈ Fn2 is given by

fy1,...,yk(x) = (fy1,...,yk−1
)yk(x) =

∑
I⊆{1,...,k}

f(x+
∑
i∈I

yi).
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Note that if f is an n-variate polynomial over F2 of total degree d, then any derivative of it is
a polynomial of total degree at most d−1, and any k-iterated derivative of it is a polynomial
of total degree at most d− k. This is an important property that is crucial to our proof.

As a first step to bounding the weight distribution of Reed-Muller codes we establish the
following general result. We show that a function f : Fn2 → F2 whose weight is bounded by
wt(f) ≤ 2−k(1− ε) can be approximated by a universal function A of a small number of the
k-iterated derivatives of f (Lemma 11.1). That is, for any approximation parameter δ > 0,
there exist c = c(k, ε, δ) sets of k-iterated derivatives {yi,1, . . . , yi,k}1≤i≤c, such that

Pr
x∈Fn2

[f(x) 6= A({yi,j}, fy1,1,...,y1,k
(x), . . . , fyc,1,...,yc,k(x))] < δ.

We accomplish this in three steps. It will be useful to represent functions f : Fn2 → F2

as (−1)f : Fn2 → {−1, 1}. First, we show that the function (−1)f(x) can be computed as an
expectation of its (k − 1)-iterated derivatives (−1)fy1,...,yk−1

(x) multiplied by some bounded
coefficients (Lemma 11.2). Moreover, we show that each of the (k − 1)-iterated derivatives
is biased (a function g : Fn2 → {−1, 1} is biased if E[g] 6= 0). Using standard sampling
methods we convert this to approximation using only a few biased (k−1)-iterated derivatives
(Lemma 11.4). The final step is approximating each biased (k − 1)-iterated derivative by a
small number of its derivatives (which are k-iterated derivatives of f). To this end we prove
a general lemma showing that any biased function can be approximated in a concise manner
by an algorithm having oracle access to a small number of its derivatives (Lemma 11.3).

We now apply the approximation by iterative derivative result we just described to bound
the weight distribution of Reed-Muller codes. Fix δ = δ(d) to be specified later. The
approximation lemma implies that every RM(n, d) codeword of weight up to 2−k(1− ε) can
be well approximated by a function of c = c(k, ε, δ) of its k-iterated derivatives. Now we use
the minimal distance of Reed-Muller codes. Any two distinct codewords f ′, f ′′ ∈ RM(n, d)
have distance at least 2−d. Thus, if we have a good enough approximation of f ′ (that is,
for δ < 2−(d+1)), then such an approximation determines f ′ uniquely. Hence, to upper
bound the number of Reed-Muller codewords it is enough to upper bound the number of
δ-approximations for these codewords.

Using the approximation result we obtained, we get that the number of RM(n, d) code-
words up to weight 2−k(1 − ε), is bounded by the number of possible distinct inputs for
the approximation function A: the set of directions {yi,j} and the directional derivatives
functions fy1,1,...,y1,k

(x), . . . , fyc,1,...,yc,k(x). Each direction yi,j is an element of Fn2 , hence has
2n possible values; each k-iterated derivative is an n-variate polynomial of total degree at
most d − k, hence has at most 2O(nd−k) possible values. Thus, we get that the number of
Reed-Muller codewords of weight up to 2−k(1− ε) can be bounded by

A(2−k(1− ε)) ≤ 2n·kc+O(nd−k)·c.

Combining these with the estimates we get for c we get the required upper bound. We
complement these upper bound estimations with matching lower bounds. The bounds on
the list-decoding size of Reed-Muller codes are obtained using similar techniques.

A similar work along the same lines is the work of Bogdanov and Viola [BV07], which
shows that a function f : Fn2 → F2 whose weight is bounded by wt(f) ≤ 1/2 − ε can
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be well approximated by c = c(k, ε) of its 1st-derivatives. Note that approximation by 1st-
derivatives does not imply in general approximation by k-iterated derivatives which is crucial
for obtaining our bounds here.

11.1.6 Generalized Reed-Muller Codes

The problems of bounding both the accumulative weight distribution and the list-decoding
size can be extended to Generalized Reed-Muller codes, the family of low-degree polynomials
over larger fields. However, our techniques fail to prove tight results in these cases, as they
do for Reed–Muller codes. We provide in Section 11.4 some partial results for this case and
make a conjecture about the correct bounds.

11.1.7 Organization

The paper is organized as follows. In Section 11.2 we prove the main technical lemma,
showing that a low-weight function can be approximated by its iterated derivatives. We
then apply this lemma to bounding the weight distribution and list-decoding size of Reed-
Muller codes in Section 11.3. We study the extension of our techniques for Generalized
Reed-Muller codes in Section 11.4, where we provide some (non tight) bounds for these
codes.

11.2 Approximation of biased functions by derivatives

We prove in this section the main technical lemma we use for bounding the weight distribu-
tion and list-decoding size of Reed–Muller codes. We require some definitions before stating
it.

Definition 11.5 (Discrete derivatives). Let f : Fn2 → F2 by a function. The discrete deriva-
tive of f in direction a ∈ Fn2 is defined as

fa(x) = f(x+ a) + f(x).

The k-iterated discrete derivative of f in directions a1, ..., ak ∈ Fn2 is defined as

fa1,...,ak(x) =(...((fa1)a2)...)ak(x) =∑
S⊆[k]

f(x+
∑
i∈S

ai)

We note that usually derivatives are defined as fa(x) = f(x+ a)− f(x), but since we are
working over F2, we can ignore signs. Another notion central to our proof is that of a bias
of a function.

Definition 11.6 (Bias). The bias of a function f : Fn2 → F2 is

bias(f) =Ex∈Fn2 [(−1)f(x)] =

P[f = 0]− P[f = 1] =

1− 2wt(f)
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Our main lemma states that if f is a function with small weight, then it can be approxi-
mated by an algorithm having oracle access to a small number of its iterated derivatives. In
the following when we assume an algorithm A receives as input a function g(·), we mean A
has the ability to evaluate g on any input. One example is if A receives a representation of g
in some canonical form (when g is a polynomial, A receives as input its list of coefficients).

Lemma 11.1. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε). For every error
parameter δ > 0 there exists a universal algorithm A (that is, independent of f) with the
following properties. A has two types of inputs. The first is an input x ∈ Fn2 on which A is
required to guess f(x). The second input is a family of t = O(log(1/εδ) · log(1/δ)) sets of k
directions {yi,j ∈ Fn2 : 1 ≤ i ≤ t, 1 ≤ j ≤ k} and their corresponding k-iterated derivatives of
f , {fyi,1,...,yi,k(·) : 1 ≤ i ≤ t}. For every function f there exists a set of directions {yi,j} such
that

Pr
x∈Fn2

[f(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{fyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.

Our starting point in the proof of Lemma 11.1 is the following lemma, which states that
if a function f has weight less than 2−k(1 − ε), then it can be computed exactly by a its
iterated (k − 1)-derivatives, and moreover each of theses derivatives is biased.

Lemma 11.2. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε) for integer k ≥ 2.
Then the function (−1)f(x) : Fn2 → {−1, 1} can be written as

(−1)f(x) =

Ea1,...,ak−1∈Fn2 [αa1,...,ak−1
(−1)fa1,...,ak−1

(x)]

where

1. The coefficients αa1,...,ak−1
are real numbers of absolute value at most 10.

2. All the functions fa1,...,ak−1
are biased, bias(fa1,...,ak−1

) ≥ ε.

We prove Lemma 11.2 in Subsection 11.2.1. The second lemma shows that biased func-
tions can be approximated using a small number of their derivatives.

Lemma 11.3. Let f : Fn2 → F2 be a function such that bias(f) ≥ ε. For every error
parameter δ > 0 there exists a universal algorithm A′ (that is, independent of f) with the
following properties. A′ has two types of inputs. The first is an input x ∈ Fn2 on which A′ is
required to guess f(x). The second input is a set of t = log(1/εδ)+1 directions y1, . . . , yt ∈ Fn2
and the directional derivatives of f in these directions fy1(·), . . . , fyt(·). For every function
f there exists a set of directions y1, . . . , yt such that

Pr
x∈Fn2

[f(x) 6= A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))] ≤ δ.

We prove Lemma 11.3 in Subsection 11.2.2. The last ingredient required for the proof of
Lemma 11.1 is a standard sampling lemma showing how to transform exact computation by
averaging many functions, to approximation by averaging few functions.
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Lemma 11.4. Let f : Fn2 → F2 be a function, H = {h1, ..., ht} a set of functions from Fn2 to
F2, such that there exist constants ch1 , ..., cht of absolute value at most C, such that

(−1)f(x) = Ei∈[t][chi(−1)hi(x)] (∀x ∈ Fn2 )

Then f can be approximated by a small number of the functions h1, ..., ht. For any error
parameter δ > 0, there exist functions h1, ..., h` ∈ H for ` = O(C2 log 1/δ), and a function
F : F`2 → F2, such that the relative distance between f(x) and F (h1(x), ..., h`(x)) is at most
δ, i.e.

Px∈Fn2 [f(x) 6= F (h1(x), ..., h`(x))] ≤ δ

The function F is a weighted majority, i.e. it is of the form

F (h1(x), ..., h`(x)) = sign(
∑̀
i=1

si(−1)hi(x)).

Moreover, we can have s1, ..., s` to be integers of absolute value at most C + 1.

We prove Lemma 11.4 in Subsection 11.2.3. We now prove Lemma 11.1 using Lem-
mas 11.2, 11.3 and 11.4.

Proof of Lemma 11.1. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε), and let
δ > 0 be an error parameter. We start by defining an algorithm A1(x) approximating f(x)
using a small number of its (k − 1)-iterated derivatives. If k = 1 simply set A1(x) = f(x).
For k ≥ 2 apply Lemma 11.2 to get that (−1)f(x) can be exactly computed as

Ea1,...,ak−1∈Fn2 [αa1,...,ak−1
(−1)fa1,...,ak−1

(x)]

where |αa1,...,ak | ≤ 10 and bias(fa1,...,ak−1
(x)) ≥ ε. Applying Lemma 11.4 we get that f can

be approximated by a small number of its (k − 1)-iterated derivatives,

Pr
x∈Fn2

[Maj(fa1,1,...,a1,k−1
(x), . . . , fa`,1,...,a`,k−1

(x))

6= f(x)] ≤ δ/2

where ` = O(log 1/δ). Define

A1(x) = Maj(fa1,1,...,a1,k−1
(x), . . . , fa`,1,...,a`,k−1

(x)).

We now approximate each (k−1)-iterated derivative by a small number of its derivatives.
We will use Lemma 11.3 to this end. Notice this can be done since by Lemma 11.2 all (k−1)-
iterated derivatives fai,1,...,ai,k−1

have bias of at least ε (and in the k = 1 case, bias(f) ≥ ε).
Thus, for each 1 ≤ i ≤ ` there exists t = O(log(1/εδ)) directions yi,1, . . . , yi,t such that

Pr
x∈Fn2

[fai,1,...,ai,k−1
(x) 6= A′(x; yi,1, . . . , yi,k,

fai,1,...,ai,k−1,yi,1(·), . . . , fai,1,...,ai,k−1,yi,t(·))]
≤ δ/(2`).
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Plugging all these into A1, we get an algorithm A such that

Pr
x∈Fn2

[f(x) 6= A(x; {yi,j : 1 ≤ i ≤ `, 1 ≤ j ≤ t},

{fai,1,...,ai,k−1,yi,j : 1 ≤ i ≤ `, 1 ≤ j ≤ t})] ≤ δ.

In total, A has as input ` · t = O(log(1/εδ) · log(1/δ)) k-iterated derivatives of f , and (a
subset) of the directions of these derivatives.

11.2.1 Proof of Lemma 11.2

Before proving Lemma 11.2, we need some claims regarding derivatives. The first claim shows
that if a function has non-zero bias, it can be computed by an average of its derivatives.

Claim 11.1. Let g : Fn2 → F2 be a function such that bias(g) 6= 0. Then

(−1)g(x) =
1

bias(g)
Ea∈Fn2 [(−1)ga(x)]

where the identity holds for any x ∈ Fn2 .

Proof. Fix x. We have

(−1)g(x)Ea∈Fn2 [(−1)ga(x)] =

Ea∈Fn2 [(−1)g(x)−ga(x)] =

Ea∈Fn2 [(−1)g(x+a)] = bias(g)

The following claim shows that if a function has low weight, then derivatives of it will
also have low weight, and thus large bias.

Claim 11.2. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε). Let a1, ..., as ∈ Fn2
for 1 ≤ s ≤ k − 1 be any derivatives, and consider bias(fa1,...,as). Then bias(fa1,...,as) ≥
1− 2s+1−k(1− ε). In particular

1. If s < k − 1 then bias(fa1,...,as) ≥ 1− 2s+1−k.

2. If s = k − 1 then bias(fa1,...,as) ≥ ε.

Proof. Consider fa1,...,as

fa1,...,as =
∑
I⊆[s]

f(x+
∑
i∈I

ai)

For random x, the probability that f(x+
∑

i∈I ai) = 1 is wt(f), which is at most 2−k(1−ε).
Thus by the union bound,

Px∈Fn2 [∃I ⊆ [s], f(x+
∑
i∈I

ai) = 1] ≤ 2s−k(1− ε)
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In particular it implies that

wt(fa1,...,as) = Px∈Fn2 [fa1,...,as(x) = 1] ≤ 2s−k(1− ε)

and we get the bound since bias(fa1,...,as) = 1− 2wt(fa1,...,as).

We now can prove Lemma 11.2 using Claims 11.1 and 11.2.

Proof of Lemma 11.2. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1 − ε). Thus
bias(f) = 1− 2wt(f) > 0 and by Claim 11.1 we can write

(−1)f(x) =
1

bias(f)
Ea1∈Fn2 [(−1)fa1 (x)]

If k = 1 we are done. Otherwise by Claim 11.2, fa1 also has positive bias,

bias(fa1) ≥ 1− 2s+1−k(1− ε) > 0

and so again by Claim 11.1 we can write

(−1)fa1 (x) =
1

bias(fa1)
Ea2∈Fn2 [(−1)fa1,a2 (x)]

Thus we have

(−1)f(x) =

1

bias(f)
Ea1∈Fn2 [

1

bias(fa1)
Ea2∈Fn2 [(−1)fa1,a2 (x)]]

We can continue this process as long as we can guarantee that fa1,...,as has non-zero bias
for all a1, ..., as ∈ Fn2 . By Claim 11.2 we know this happens for s ≤ k − 1, and thus we have

(−1)f(x) =

Ea1,...,ak−1∈Fn2 [αa1,...,ak−1
(−1)fa1,...,ak−1

(x)]

where

αa1,...,ak =

1

bias(f)

1

bias(fa1)

1

bias(fa1,a2)
...

1

bias(fa1,...,ak−2
)
.

By Claim 11.2 we know that bias(fa1,...,ak−1
) ≥ ε for all (k − 1)-iterated derivatives. We

now bound αa1,...,ak . By Claim 11.2 we get that

1 ≤ αa1,...,ak ≤
k−2∏
s=0

1

1− 2s−k+1
≤
∏
r≥1

1

1− 2−r
≤ 10.
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11.2.2 Proof of Lemma 11.3.

For a set of directions y1, . . . , yt ∈ Fn2 and a subset I ⊆ [t], define yI =
∑

i∈I yi. We start
by showing that if we know the directions y1, . . . , yt and the directional derivatives of f in
these directions fy1(·), . . . , fyt(·), then we can also compute all the derivatives in directions
yI , that is the functions fyI (·).

Claim 11.3. Let y1, . . . , yt ∈ Fn2 a set of directions, and fy1(·), . . . , fyt(·) the directional
derivatives of a function f : Fn2 → F2. For every non-empty I ⊆ [t] there exists an algorithm
AI such that

AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) = fyI (x)

for all x ∈ Fn2 .

Proof. Let I = {i1, . . . , ir}. The algorithm AI calculates

AI(x) =
r∑

a=1

fyia (x+
a−1∑
b=1

yib).

It is straightforward to verify that AI(x) = fyI (x) for all x ∈ Fn2 .

We turn to prove Lemma 11.3.

Proof of Lemma 11.3. Define the algorithm A′ as follows. For a set of directions y1, . . . , yt ∈
Fn2 and the directional derivatives of f : Fn2 → F2 in these directions fy1(·), . . . , fyt(·), define
A′(x) to be the majority vote of fyI (x), which according to Claim 11.3 can be computed by
algorithms receiving x, y1, . . . , yt, fy1(·), . . . , fyt(·), that is,

A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) =

Maj {AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·))}∅6=I⊆[t] =

Maj {fyI (x)}∅6=I⊆[t] .

We will prove that there is a choice of y1, . . . , yt for which A′(x) = f(x) for almost all x.
In fact, we will prove this occurs for a random choice of y1, . . . , yt. First, we claim that
A′(x) = f(x) iff

S =
∑
∅6=I⊆[t]

(−1)f(x+yI) > 0.

This is because fyI (x) = f(x) iff f(x+ yI) = 0. Having the majority of fyI (x) being equal to
f(x) is equivalent to S > 0 (note we cannot have S = 0 as S is the sum of an odd number
of {−1, 1} summands). Let x, y1, . . . , yt ∈ Fn2 be chosen uniformly and independently. We
prove S > 0 with high probability using Markov’s inequality. First we compute E[S].

E[S] = E

 ∑
∅6=I⊆[t]

(−1)f(x+yI)

 = (2t − 1)bias(f).
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To bound Var[S] we observe that the different summands in S are pairwise independent.
This is because for distinct I, J ⊆ [t] we have

E[(−1)f(x+yI) · (−1)f(x+yI)] =

E[(−1)f(x+yI)+f(x+yJ )] =

E[(−1)f(x+yI)] · E[(−1)f(x+yJ )] =

bias(f)2,

where we used the fact that the two points x+ yI and x+ yJ are uniform and independent
given that x, y1, . . . , yt are chosen uniformly and independently. We thus conclude that

Var[S] =
∑
∅6=I⊆[t]

Var[(−1)f(x+yI)]

= (2t − 1)Var[(−1)f(x)] ≤ 2t − 1.

Hence we conclude that

Pr[S ≤ 0] ≤ Pr[|S − E[S]| ≥ (2t − 1)bias(f)]

≤ bias(f)

2t − 1
.

Thus, for t = log(1/εδ) + 1 we get that

Pr[S ≤ 0] ≤ δ,

Hence we get that for uniformly chosen x, y1, . . . , yt,

Pr
x,y1,...,yt∈Fn2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))

6= f(x)] ≤ δ.

By an averaging argument, for every f there must exist a choice for y1, . . . , yt where

Pr
x∈Fn2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) 6= f(x)] ≤ δ.

11.2.3 Proof of Lemma 11.4

The proof of Lemma 11.4 is based on a standard sampling argument.

Proof of Lemma 11.4. Choose h1, ..., h` uniformly and independently from H. Fix x ∈ Fn2 ,
and let Zi be the random variable

Zi = chi(−1)hi(x)
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and let S = Z1+...+Z`
`

. We will use the fact that if |S − (−1)f(x)| < 1 then sign(S) =
(−1)f(x).

We first bound the probability that

|S − (−1)f(x)| > 1/4

By regular Chernoff arguments for bounded independent variables, since E[S] = (−1)f(x)

and each Zi is of absolute value of at most C, we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ e−
`

32C2

(see for example Theorem A.1.16 in [AS00]).
In particular for ` = O(C2 log 1/δ) we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ δ

Thus by averaging arguments, there exists h1, ..., h` such that

Px∈Fn2 [|
∑`

i=1 chi(−1)hi(x)

`
− (−1)f(x)| ≥ 1/4] ≤ δ

We now round each coefficient to a close rational, without damaging the approximation
error. The coefficient of (−1)hi(x) is αi =

chi
`

. If we round chi to the closest integer [chi ],
we get that the coefficient of each (−1)hi(x) is changed by at most 1

2`
, and thus the total

approximation is changed by at most 1/2. Hence we have

Px∈Fn2 [|
∑`

i=1[chi ](−1)hi(x)

`
)− (−1)f(x)| ≥ 3/4] ≤ δ.

Thus we got that

Px∈Fn2 [sign(

∑`
i=1[chi ](−1)hi(x)

`
) 6= (−1)f(x)] ≤ δ.

Since dividing by ` does not change the sign we get

Px∈Fn2 [sign(
∑̀
i=1

[chi ](−1)hi(x)) 6= (−1)f(x)] ≤ δ

11.3 Bounds for Reed-Muller codes

In this section we study the weight distribution and list-decoding size of Reed–Muller codes.
Recall that RM(n, d) denotes the code of multivariate polynomials p(x1, ..., xn) over F2 of
total degree at most d. In the following n and d will always stand for the number of variables
and the total degree. We assume that d� n, and study in particular the case of constant d.
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11.3.1 Weight distribution of Reed-Muller codes

We prove in this subsection our first main theorem, Theorem 11.3, which gives the asymp-
totic behavior of the weight distribution of Reed-Muller codes. It is a direct corollary of
Theorem 11.6, giving an upper bound on the accumulative weight at distance 2`−d − ε, and
Lemma 11.5, giving a simple lower bound at distance 2`−d−1.

Theorem 11.6 (Upper bound on the accumulative weight). For any integer 1 ≤ k ≤ d− 1,

A(2−k(1− ε)) ≤ (1/ε)O( d2

(d−k)!
nd−k).

In particular for constant d we get that

A(2−k − ε) ≤ (1/ε)O(nd−k).

Lemma 11.5 (Lower bound on the accumulative weight). For any integer 1 ≤ k ≤ d

A(2−k) ≥ 2
nd−k+1

(d−k+1)!
(1+o(1)).

In particular for constant d we get that

A(2−k) ≥ 2Ω(nd−k+1).

We start by proving the lower bound.

Proof of Lemma 11.5. Single out k variables x1, ..., xk, and let q be any degree d − k + 1
polynomials on the remaining n − k variables. First, for any such q, the following degree d
polynomial has relative weight exactly 2−k

q′(x1, ..., xn) = x1x2...xk−1(xk + q(xk+1, ..., xn))

The number of different polynomials q is

2( n−k
d−k+1) = 2

nd−k+1

(d−k+1)!
(1+o(1))

We prove Theorem 11.6 using Lemma 11.1.

Proof of Theorem 11.6. Fix 1 ≤ k ≤ d − 1. We will bound the number of polynomials
p ∈ RM(n, d) such that wt(p) ≤ 2−k(1−ε). Let p be any such polynomial. Apply Lemma 11.1
to p(x) with error parameter δ = 2−(d+2). There exists a universal algorithm A, and for each
p a set of t = O(d2 + d log(1/ε)) directions {yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k} such that

Pr
x∈Fn2

[p(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{pyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.
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Define p′(x) = A
(
x; {yi,j}, {pyi,1,...,yi,k(·)}

)
. We have that dist(p, p′) = Prx[p(x) 6= p′(x)] ≤ δ.

We claim that this guarantees that p′(x) specifies p(x) uniquely - it is the only element of
RM(n, d) of distance at most δ from p′. This is because the minimal distance of RM(n, d)
is 2−d, and we chose δ to be less than half the minimal distance. Now, in order to compute
p′(x), we need to specify to the algorithm A the set of vectors yi,j and the polynomials
pyi,1,...,yi,k(·). To specify each vector yi,j ∈ Fn2 we require n bits. Each polynomial pyi,1,...,yi,k(·)
is a k-iterated derivative of a degree-d polynomial p(x), hence it is a degree d−k polynomial.
Thus, in order to specify it, we need to give the list of its

∑d−k
i=0

(
n
i

)
bits. Summing up, we

need a total of

tk · n+ t ·
d−k∑
i=0

(
n

i

)
= O

(
d2 log(1/ε) · nd−k

(d− k)!

)
bits in order to specify p′ completely. Since each p′ approximates at most a single p we get
that the number of polynomials p ∈ RM(n, d) such that wt(p) ≤ 2−k(1 − ε) is bounded by
the number of distinct p′, which is bounded by

(1/ε)
O
(

d2

(d−k)!
nd−k

)
.

11.3.2 List-decoding size of Reed-Muller codes

We now turn to the problem of bounding the list-decoding size of Reed-Muller codes, and
we prove our second main theorem, Theorem 11.4. We will show that the same techniques
used to bound the weight distribution when proving Theorem 11.3 can be applied with
minor variants to also bound the list-decoding size. We note this is an exception; commonly
bounding the list-decoding size is a much harder task than bounding the weight distribution,
and there exist codes where these two parameters behave very differently. However, we will
see that in the case of Reed–Muller codes they share the same asymptotic behavior.

Theorem 11.4 giving the list-decoding size of Reed-Muller codes is a direct corollary of
Theorem 11.7, giving an upper bound on the list-decoding size at distance 2`−d − ε, and
the same lower bound we used to bound the accumulative weight distribution, obtained in
Lemma 11.5.

Theorem 11.7 (Upper bound on the list-decoding size). For any integer 1 ≤ k ≤ d− 1,

L(2−k(1− ε)) ≤ (1/ε)O( d2

(d−k)!
nd−k).

In particular for constant d we get that

L(2−k − ε) ≤ (1/ε)O(nd−k).

Proof of Theorem 11.7. The proof follows the same lines as that of Theorem 11.6. Fix
f : Fn2 → F2 to be any function. We will bound the number of polynomials p ∈ RM(n, d)
such that dist(p, f) ≤ 2−k(1 − ε). Let g = p + f such that wt(g) ≤ 2−k(1 − ε). Applying
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Lemma 11.1 to g(x) with the error parameter δ = 2−(d+2), there exists a universal algorithm
A and a set of direction {yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k} such that

Pr
x∈Fn2

[g(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{gyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.

Since g(x) = p(x)+f(x) we also have gyi,1,...,yi,k(·) = pyi,1,...,yi,k(·)+fyi,1,...,yi,k(·). Hence, we can
replace each instance of g or its derivatives in A with instances of p, f and their derivatives.
Thus we get that

Pr
x∈Fn2

[p(x) 6=f(x) +A(x; {yi,j},

{pyi,1,...,yi,k(·) + fyi,1,...,yi,k(·)})] ≤ δ.

Define p′(x) = f(x) + A(x; {yi,j}, {pyi,1,...,yi,k(·) + fyi,1,...,yi,k(·)}). Since we again have
dist(p, p′) ≤ δ, the function p′(x) specifies p(x) uniquely as the only element in RM(n, d)
which has distance at most δ from p′. Now, in order to compute p′, we may assume the
algorithm A has oracle access to the function f(·), since we have fixed it in advance, and it
is the same for all the polynomials we wish to bound. Thus, in order to calculate p′(x), we
need to provide to the algorithm A the set of directions yi,j and the polynomials pyi,1,...,yi,k(·).
Notice that A can compute fyi,1,...,yi,k(·) using the oracle access to f and the set of directions
yi,j. As in the proof of Theorem 11.6, each direction yi,j ∈ Fn2 requires n bits, and each

polynomial pyi,1,...,yi,k(·) being a degree d − k polynomial requires
∑d−k

i=0

(
n
i

)
bits to specify.

Following the same calculations as those in the proof of Theorem 11.6, we conclude that the
number of distinct p′(x) is bounded by

(1/ε)O( d2

(d−k)!
nd−k).

Thus, for every fixed function f , this is also a bound on the number of p ∈ RM(n, d) such
that dist(p, f) ≤ 2−k(1− ε).

11.4 Generalized Reed-Muller codes

The problems of bounding both the accumulative weight distribution and the list-decoding
size can be extended to Generalized Reed-Muller, the code of low-degree polynomials over
larger fields. However, our techniques fail to prove tight result in these cases. We briefly
describe the reasons below, and give some partial results.

We start by making some basic definitions. Let q be a prime, and let GRMq(n, d) denote
the code of multivariate polynomials p(x1, ..., xn) over the field Fq, of total degree at most d.

Definition 11.7. The relative weight of a function f : Fnq → Fq is the fraction of non-zero
elements,

wt(f) =
1

qn
|{x ∈ Fnq : f(x) 6= 0}|
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Definition 11.8. The relative distance between two functions f, g : Fnq → Fq is defined as

dist(f, g) = Px∈Fnq [f(x) 6= g(x)]

The accumulative weight distribution and the list-decoding size are defined analogously
for GRMq(n, d), using the appropriate definitions for relative weight and relative distance.
We denote them by Aq and Lq. For each 1 ≤ k ≤ d, we define a distance rk as follows.

1. For k = 1, let d = (q − 1)a + b, where 1 ≤ b ≤ q − 1. Define r1 = q−a(1 − b/q). r1 is
the minimal distance of GRMq(n, d).

2. For 2 ≤ k ≤ d − 1, let d − k = (q − 1)a + b, where 1 ≤ b ≤ q − 1. Define rk =
q−a(1− b/q)(1− 1/q).

3. For k = d, define rd = 1− 1/q.

We conjecture that both for the accumulative weight distribution and the list-decoding
size, the distances rk are the thresholds for the exponential dependency in n.

Conjecture 11.1. Let ε > 0 be constant, and consider GRMq(n, d) for constant d. Then

• For α ≤ r1 − ε both Aq(α) and Lq(α) are constants.

• For rk ≤ α ≤ rk+1 − ε both Aq(α) and Lq(α) are 2Θ(nk).

• For α ≥ rd both Aq(α) and Lq(α) are 2Θ(nd).

Proving lower bounds for Aq(rk) is similar to the case of RM(n, d).

Lemma 11.6 (Lower bound for Aq). For any integer 1 ≤ k ≤ d,

Aq(rk) ≥ 2Ω(nk)

The problem is proving matching upper bounds. Using directly the derivatives method
we used to give upper bounds for RM(n, d) gives the same bounds for GRMq(n, d), alas they
are not tight for q > 2.

Aq(2
−k − ε) ≤ 2O(nd−k)

If we would like to get upper bounds closer to the lower bounds, a natural approach would be
to generalize Lemma 11.2 to taking several derivatives in the same direction (which is possible
over larger fields). This would give tight results for some values of k. The crucial point is
generalizing Claim 11.1 to the case of taking multiple derivatives in the same direction. So
far, we didn’t find a way of doing so.

Instead, we give partial results for Conjecture 11.1 at both ends of the spectrum. We
give results when α ≤ r1 − ε, and when rd−1 ≤ α ≤ rd − ε (when α ≥ rd Lemma 11.6 gives
Lq(α) and Aq(α) are both exponential in nd, and this is obviously tight).

First, the minimal distance of GRMq(n, d) is known to be r1. Thus, for any ε > 0,
Aq(r1− ε) = 1. Gopalan, Klivans and Zuckerman [GKZ08] prove that Lq(r1− ε) is constant
when q − 1 divides d.
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Theorem 11.8 (Corollary 18 in [GKZ08]). Assume q − 1 divides d. Then

Lq(r1 − ε) ≤ c(q, d, ε)

Moving to the case of rd−1 ≤ α ≤ rd − ε, we prove

Lemma 11.7. Let ε > 0 be constant. then

Aq(rd − ε) ≤ 2O(nd−1)

We now move on to prove Lemmas 11.6 and 11.7. We start with Lemma 11.6.

Proof of Lemma 11.6. We start by proving for 2 ≤ k ≤ d − 1. Let d − k = (q − 1)a + b,
where 1 ≤ b ≤ q − 1. Single out a + 2 variables x1, ..., xa+2, and let g be any degree k
polynomial on the remaining variables. The following polynomial has degree d and weight
exactly q−a(1− b/q)(1− 1/q).

g′(x1, ..., xn) =(
a∏
i=1

q−1∏
j=1

(xi − j)

)
·

(
b∏

j=1

(xa+1 − j)

)
·

(xa+2 + g(xa+3, ..., xn))

The number of distinct polynomial g is 2Ω(nk).
The proofs for k = 1 and k = d are similar: for k = 1, let d = (q − 1)a + b. Let

l1(x), ..., la+1(x) be any independent linear functions, and consider

g′(x1, ..., xn) =(
a∏
i=1

q−1∏
j=1

(li(x)− j)

)(
b∏

j=1

(la+1(x)− j)

)
For k = d, let g be any degree d polynomial on variables x2, ..., xn, and consider
g′(x1, ..., xn) = x1 + g(x2, ..., xn).

We now continue to prove Lemma 11.7. We first make some necessary definitions.

Definition 11.9. The bias of a polynomial p(x1, ..., xn) over Fq is defined to be

bias(p) = Ex∈Fnq [ωp(x)]

where ω = e2πi/q is a primitive q-th root of unity.

Kaufman and Lovett [KL08] prove that biased low-degree polynomials can be decomposed
into a function of a constant number of lower degree polynomials.

Theorem 11.9 (Theorem 2 in [KL08]). Let p(x1, ..., xn) be a degree d polynomial, such that
|bias(p)| ≥ ε. Then p can be decomposed as a function of a constant number of lower degree
polynomials

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d− 1, and c = c(q, d, ε).
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We will use Theorem 11.9 to bound A(rd − ε) for any constant ε > 0.

Proof of Lemma 11.7. We will show that any polynomial p ∈ GRMq(n, d) such that wt(p) ≤
1− 1/p− ε can be decomposed as

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d−1, and c depends only on q, d and ε. Thus the number of such polynomials
is bounded by the number of possibilities to choose c degree d−1 polynomials, and a function
F : Fcq → Fq. The number of such possibilities is at most 2O(nd−1). Let p be such that
wt(p) ≤ 1 − 1/p − ε. We will show there exists α ∈ Fq, α 6= 0 such that bias(αp) ≥ ε. We
will then finish by using Theorem 11.9 on the polynomial αp.

Consider the bias of αp for random α ∈ Fq.

Eα∈Fq [bias(αp)] = Eα∈Fq ,x∈Fnq [ωαp(x)] = 1− wt(p)

since for x’s for which p(x) = 0, Eα∈Fq [ωαp(x)] = 1, and for x such that p(x) 6= 0,
Eα∈Fq [ωαp(x)] = 0. We thus get that

Eα∈Fq\{0}[bias(αp)] = 1− q

q − 1
wt(p) ≥ q

q − 1
ε

So, there must exist α 6= 0 such that bias(αp) ≥ ε.
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Chapter 12

Holes in generalized Reed-Muller
codes

The possible relative weights of codewords of Generalized Reed–Muller codes are studied.
Let RMq(r,m) denote the code of polynomials over the finite field Fq in m variables of total
degree at most r. The relative weight of a codeword f ∈ RMq(r,m) is the fraction of non-
zero entries in f . The possible relative weights are studied, when the field Fq and the degree
r are fixed, and the number of variables m tends to infinity. It is proved that the set of
possible weights is sparse - for any α which is not rational of the form α = `/qk there exists
some ε > 0 such that no weights fall in the interval (α− ε, α+ ε). This demonstrates a new
property of the weight distribution of Generalized Reed-Muller codes.

12.1 Introduction

In this work we study the possible weights of codewords of Generalized Reed–Muller codes.
For a prime power q, let Fq denote the field of q elements. The rth-order Generalized Reed–
Muller code over Fq, denoted by RMq(r,m), is a linear code over Fq, whose codewords
f ∈ RMq(r,m) : Fmq → Fq are evaluations of polynomials over Fq in m variables of total
degree at most r. Reed–Muller codes correspond to the special case of q = 2. Both Reed–
Muller codes and the more general family of Generalized Reed–Muller codes have attracted
research for many years; to quote [MS83],

Reed–Muller (or RM) codes are one of the oldest and best understood families of codes.
In this work we study Generalized Reed–Muller codes RMq(r,m), when the field Fq and

order r are fixed, and the number of variables m tends to infinity. The basic property that
we study is the relative weights of codewords f ∈ RMq(r,m).

Definition 12.1 (Relative weight). The relative weight of a codeword f ∈ RMq(r,m) is the
fraction of non-zero elements,

wt(f) =
1

qm
|{x ∈ Fmq : f(x) 6= 0}|.

We denote by Aq(r,m) the set of all weights of codewords f ∈ RMq(r,m),

Aq(r,m) = {wt(f) : f ∈ RMq(r,m)}.
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There are two simple constraints on the values in Aq(r,m). The first constraint relates
to the the fact that the code is finite - since a relative weight is the fraction of inputs x for
which f(x) 6= 0, all values in Aq(r,m) are rational of the form `

qm
. The second one relates

to the minimal distance of the code.

Definition 12.2 (Minimal distance). The minimal relative distance of a code C is the min-
imal weight of a non-zero codeword f ∈ C.

The minimal distance of Generalized Reed–Muller codes is well-known (see for example
[MS83]).

Fact 12.1. Let r = (q − 1)a + b where 0 ≤ b ≤ q − 1. The minimal relative distance of
RMq(r,m) is

δq(r) =
1

qa

(
1− b

q

)
.

We are interested in the set of possible weights of Aq(r,m) for fixed q and r when m→∞.
Clearly Aq(r,m) ⊂ Aq(r,m

′) when m < m′. Thus it makes sense to look at the limit

Aq(r) =
∞⋃
m=1

Aq(r,m).

Our main object of study is the set Aq(r). A priory, one would think that the set Aq(r) is
dense inside the permissible range, given by the minimal distance of the code. However, our
main result shows that the truth is quite far from this. First we define q-rational numbers.

Definition 12.3 (q-rational numbers). A rational number α ∈ [0, 1] is q-rational if it is of
the form α = `

qk
for some integers `, k.

Note that if q = pt for a prime p, then q-rational numbers and p-rational numbers define
the same set.

Theorem 12.1 (Main theorem). Let α ∈ [0, 1] be a number which is not q-rational. Then
there exists some ε > 0 such that Aq(r) contains no value in the range (α − ε, α + ε).
Equivalently, there is no sequence of polynomials f1, f2, . . . over Fq of degree at most r, each
possibly on a different number of variables, such that limk→∞wt(fk) = α.

For example, there is no sequence of polynomials f1, f2, . . . over F3 of total degree at most
17, such that limk→∞wt(fk) = 1

2
. The following is an immediate corollary of Theorem 12.1.

Corollary 12.1. Let C denote the closure of C ⊂ [0, 1]. We have

∞⋃
r=1

Aq(r) = {the set of q-rationals}

Proof. Theorem 12.1 shows that Aq(r) contains only q-rational numbers. On the other
hand, any q-rational number α = `

qk
can be realized as the relative weight of some function

f : Fkq → Fq. Clearly f ∈ RMq((q − 1)k, k) and α ∈ Aq((q − 1)k).
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Consider the following possible strengthening of Theorem 12.1: all weights in Aq(r) are
of the form `

qt
, where t is bounded. This is not true, as the following example shows.

Example 12.1. Consider the set A2(2), i.e. the set of relative weights of quadratic polyno-
mials over F2. For every k ∈ N, let f be the polynomial

f(x1, . . . , x2k) = x1x2 + x3x4 + · · ·+ x2k−1x2k

A straightforward calculation shows that

wt(f) =
2k + 1

2k+1

Thus, the set of attainable weights by quadratics over F2 contains 2-rational numbers with
unbounded denumerators. In fact, the set A2(2) is given by

A2(2) =

{
0,

1

2
, 1

}
∪
{

2k + 1

2k+1
: k ∈ N

}
∪
{

2k − 1

2k+1
: k ∈ N

}
and the only limit point of A2(2) is 1

2
.

12.1.1 Related results

The weights of codewords of Reed–Muller and Generalized Reed–Muller codes have been
extensively studied. A related line of research is that of divisibility of weights of codewords.
The (non-relative) weight of a codeword is the number of non-zero elements in it. Ax [Ax64]
proved that weights of codewords f ∈ RMq(r,m) are divisible by qdr/me−1. Notice that such
results are incomparable to our results - if we write the weight of a codeword as a number
in base q, divisibility results relate to the lower digits of the weight, while our results relate
to the upper digits of the weight.

Another line of research, which is probably the most extensively studied one, is inves-
tigating the weight distribution of Generalized Reed–Muller codes. That is, estimating the
number of codewords f ∈ RMq(r,m) of relative weight at most ρ, for values of ρ ranging
between the minimal distance of the code and 1.

No exact (or even asymptotically tight) answer is known in the general case. However,
partial results are known in several cases. The case of r = 1, i.e. that of linear polynomials,
is easy. Dixon (see [MS83]) provided a complete canonical characterization of quadratic
polynomials. This amounts to a full understanding of the weight distribution of RMq(2,m).
The set of codewords f ∈ RMq(r,m) which attain exactly the minimal weight was char-
acterized by Delsarte et al. [DGW70]. In the case of Reed–Muller codes, i.e when q = 2,
Kasami and Tokura [KT70] gave a complete characterization of codewords of weight at most
twice the minimal distance of the code. Azumi et al. [AKT76] characterized codewords of
weight at most 2.5 times the minimal distance of the code. Recently, Kaufman, Porat and
the author [KLP10] gave an estimate on the number of codewords in Reed–Muller codes for
all distances.
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12.1.2 Organization

The paper is organized as follows. Theorem 12.1 is proved in Section 12.2. The proof is
based on a technical lemma which is proved in Section 12.3.

12.2 Proof of Theorem 12.1

We study codewords f ∈ RMq(r,m). Equivalently, we study polynomials: f is a polynomial
over Fq in m variables of total degree at most r. First, we fix some notation. We denote
elements of Fmq by x = (x1, . . . , xm), and polynomials/functions by f(x) = f(x1, . . . , xm).
When we speak about the degree of a polynomial, we always mean its total degree. We
denote probabilities according to a distribution D by Pz∼D[event]. For a set S we denote by
US the uniform distribution over S, and we shorthand Pz∈S for Pz∼US . We let N = {1, 2, . . . }
denote the set of natural numbers. We initiate the proof of Theorem 12.1 by showing that
it suffices to prove it over prime fields.

Claim 12.1. Let Fq be a finite field for q = pt. Let f(x1, . . . , xm) be a degree-r polynomial
over Fq. There exists a polynomial f ′(x1, . . . , xmt) over Fp of degree rt such that wt(f ′) =
wt(f). In particular, Aq(r) ⊂ Ap(rt).

Proof. We use standard facts about extension fields (for details, see any standard algebra
book, for example [BM65]): elements of Fq = Fpt correspond to vectors in Ftp, and multipli-
cation over Fq corresponds to a bilinear map over Ftp. Thus if we denote the representation
of xi ∈ Fq by ~xi ∈ Ftp, then the value of the polynomial f(x1, . . . , xm) is represented by
(f1(~x), . . . , ft(~x)) where ~x = ~x1 . . . ~xm ∈ Fmtp and f1, . . . , ft are polynomials over Fp of degree
r. Let g : Ftp → Fp be defined as g(0, . . . , 0) = 0 and g(z) = 1 for any z ∈ Ftp \ 0t. Note that
g is a polynomial over Fp of degree t. Define f ′(~x) = g(f1(~x), . . . , ft(~x)). Observe that we
have f ′(~x) = 0 iff f(x) = 0. In particular wt(f ′) = wt(f). To conclude the proof, observe
that as deg(f1), . . . , deg(ft) = r and deg(g) = t we have that deg(f ′) ≤ rt.

Thus we restrict our attention from now on to polynomials over a prime finite field
Fp of fixed degree r. In order to prove Theorem 12.1 we will show that for any degree-r
polynomial f(x1, ..., xm), there exists a function g(x1, ..., xc) on a constant number of inputs
(i.e. independent of m), such that wt(f) ≈ wt(g).

Lemma 12.1. Let ε : N→ (0, 1) be an arbitrary mapping from the natural numbers to (0, 1).
For any constant degree r there exists a constant C = C(Fp, r, ε(·)) such that the following
holds: for any degree-r polynomial f(x) = f(x1, ..., xm), there exists c ≤ C and a function
g(x1, ..., xc), such that

|wt(f)− wt(g)| < ε(c)

Note that it is straightforward to find a function g(x1, . . . , xc) such that wt(f) ≈ wt(g)
if the required approximation is fixed a priory. The novelty of Lemma 12.1 is that this can
be achieved even if the error is allowed to depend arbitrarily on the number of inputs c.
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Remark. In fact, a somewhat stronger version of the lemma also holds. Not only is |wt(f)−
wt(g)| < ε(c), but the statistical distance between the distributions of f and g, evaluated over
uniform inputs, is bounded by ε(c). However, we will not need this stronger version in the
proof of Theorem 12.1.

We now prove Theorem 12.1 using Lemma 12.1.

Proof of Thereom 12.1. Let α ∈ (0, 1) be a number which is not p-rational, and assume by
contradiction there exists a sequence of polynomials f1, f2, . . . of degree at most r, where
fk = fk(x1, ..., xmk), such that limk→∞wt(fk) = α. The main idea of the proof is to show
that we can approximate the weights of f1, f2, . . . by weights of functions depending on a
small number of variables. However, as α is not p-rational it cannot be approximated too
well by weights of such functions. We now proceed with the details.

Let δ be a mapping from the natural numbers to (0, 1) defined as follows. For every c ∈ N,
define δ(c) to be the distance of α from all rational numbers of the form `

pc
. Explicitly, δ(c)

is given by

δ(c) = min

{
α− bαp

cc
pc

,
dαpce
pc
− α

}
Note that δ(·) is non-increasing, and by our assumption that α is not p-rational, δ(c) > 0
for all c ∈ N.

Set ε(c) = δ(c)
4

. Once we fix the mapping ε(·), we can use Lemma 12.1: there exists
some constant C = C(Fp, r, ε(·)), such that for any polynomial fk there exists ck ≤ C, and
a function gk(x1, ..., xck), such that

|wt(fk)− wt(gk)| < ε(ck) =
δ(ck)

4
(12.1)

Since limk→∞wt(fk) = α, and ε(·) is positive, there exists some k such that

|wt(fk)− α| < ε(C) =
δ(C)

4
(12.2)

Combining (12.1) and (12.2), and since δ(·) is non-increasing, we get that

|wt(gk)− α| <
δ(ck)

4
+
δ(C)

4
≤ δ(ck)

2
(12.3)

We now show this cannot hold. The function gk is a function on ck inputs; thus, its
weight is of the form `

pck
. By the definition of δ(·):

|wt(gk)− α| =
∣∣∣∣ `pck − α

∣∣∣∣ ≥ δ(ck) (12.4)

Combining (12.3) and (12.4) yields a contradiction. Thus, α must be p-rational.
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12.3 Proof of Lemma 12.1

The proof of Lemma 12.1 is based on regularity results for constant degree polynomials by
Green and Tao [GT07] and by Kaufman and Lovett [KL08]. We first make some definitions.
In this section, all polynomials will be polynomials over Fp in m variables.

Definition 12.4 (rank of polynomials). Let f(x) be a degree-r polynomial. The (r−1)-rank
of f , denoted by rankr−1(f), is the minimal number of degree-(r−1) polynomials required to
compute f . This means that rankr−1(f) is the minimal c such that there exist polynomials
g1(x), ..., gc(x) of degree at most r − 1 and a function F : Fcp → Fp such that

f(x) = F (g1(x), ..., gc(x))

Definition 12.5 (regularity of polynomials). A degree-r polynomial f(x) is T -regular if
rankr−1(f) > T . A set of polynomials {f1(x), ..., fc(x)} is T -regular if all their non-zero
linear combinations are T -regular. That is, for any a1, ..., ac ∈ Fp not all zero, let f ′(x) =
a1f1(x)+ · · ·+acfc(x). We require that f ′ is not identically zero, and that if degree(f ′) = k,
then rankk−1(f ′) > T .

We will need the following result from [GT07]: any degree-r polynomial f is a function
of a constant number of regular polynomials g1, . . . , gc, even if the regularity requirements
on g1, . . . , gc depend on the number of polynomials c.

Lemma 12.2 (Lemma 2.3 in [GT07]). Let T : N→ N by an arbitrary mapping. There exists
a constant C1 = C1(Fp, r,T(·)) such that the following holds. For any degree-r polynomial
f(x) there exists some c ≤ C1, a set of polynomials g1(x), ..., gc(x) of degree at most r and
a function F : Fcp → Fp, such that:

1. f(x) = F (g1(x), ..., gc(x)),

2. The set of polynomials {g1(x), ..., gc(x)} is T(c)-regular.

We also need a result relating regularity of polynomials to their joint distribution.

Definition 12.6 (distribution of polynomials). Let f : Fmp → Fp be a polynomial. Its
distribution D(f) is the distribution (taking values in Fp) of applying f on a random input
x ∈ Fmp ,

D(f) = f(x)x∼UFmp
.

For a set of polynomials f1, . . . , fc : Fmp → Fp, their joint distribution D(f1, . . . , fc) (taking
values in Fcp) is the distribution of applying f1, . . . , fc on a common random input x ∈ Fmp ,

D(f1, . . . , fc) = (f1(x), . . . , fc(x))x∼UFmp
.

Definition 12.7 (statistical distance). Let D′, D′′ be two distributions taking values in the
same set S. Their statistical distance is

dist(D′, D′′) =
1

2

∑
s∈S

|P[D′ = s]− P[D′′ = s]| .
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The following result from [KL08] shows that polynomials whose distribution is not close
to uniform must have low rank.

Lemma 12.3 (Theorem 4 in [KL08]). Let f(x) be a degree-r polynomial such that
dist(D(f), UFp) ≥ ε. Then rankr−1(f) ≤ C2(Fp, r, ε).

We combine Lemma 12.2 and Lemma 12.3 to prove the following lemma, showing that
any degree-r polynomial is a function of a constant number of polynomials which are uncor-
related.

Lemma 12.4. Let ε : N→ (0, 1) be an arbitrary mapping from the natural numbers to (0, 1).
For any constant degree r there exists a constant C = C(Fp, r, ε(·)) such that the following
holds: For any degree-r polynomial f(x) there exists some c ≤ C, a set of polynomials
g1(x), . . . , gc(x) of degree at most r and a function F : Fcp → Fp, such that:

1. f(x) = F (g1(x), . . . , gc(x)),

2. dist(D(g1, . . . , gc), UFcp) < ε(c).

Proof. We will choose T : N→ N large enough, to be specified later, and apply Lemma 12.2.
Let g1, . . . , gc be the polynomials given by the lemma such that f(x) = F (g1(x), . . . , gc(x)),
and the set {g1, . . . , gc} is T(c)-regular. We will show that if we choose T(·) large enough,
we can guarantee that D(g1, . . . , gc) is close to uniform.

We first reduce the task to guaranteeing that all the non-zero linear combina-
tions of g1, . . . , gc are close to uniform. We claim that in order to guarantee that
dist(D(g1, . . . , gc), UFcp) < ε(c), it is enough to guarantee for every non-zero linear combi-
nation g′(x) = a1g1(x)+ · · ·+acgc(x) that dist(D(g′), UFp) < p−cε(c). The proof is by simple
Fourier analysis, see for example Claim 33 in [BV07].

Given this reduction, we show it is enough to require that g′ is regular. Assume
dist(D(g′), UFp) ≥ p−cε(c). Then either g′ ≡ 0, or, by Lemma 12.3, if degree(g′) = k
then

rankk−1(g′) ≤ C2(Fp, k, p−cε(c)) (12.5)

In any case, if we set T(c) = max1≤k≤r C2(Fp, k, p−cε(c)), we get that the set {g1, . . . , gc}
is not T(c)-regular, since g′ is not T(c)-regular. This is a contradiction to the guarantee of
Lemma 12.2.

Hence we conclude that the joint distribution D(g1, . . . , gc) has statistical distance of at
most ε(c) to the uniform distribution Fcp, where c ≤ C and

C = C1(Fp, r,T(·))

We will also need the following simple claim: the statistical distance between distributions
bounds the probability that any event can distinguish between them.

Claim 12.2. Let D′, D′′ be two distributions taking values in the same set S. Then for any
subset E ⊆ S we have

|Pz∼D′ [z ∈ E]− Pz∼D′′ [z ∈ E]| ≤ dist(D′, D′′)
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We are now ready to prove Lemma 12.1.

Proof of Lemma 12.1. Let f(x) be a degree-r polynomial. Apply Lemma 12.4. There exists
some constant C = C(Fp, r, ε(·)) such that there is c ≤ C, a set of polynomials g1(x), ..., gc(x)
and a function F : Fcp → Fp such that

1. f(x) = F (g1(x), . . . , gc(x)),

2. dist(D(g1, . . . , gc), UFcp) < ε(c).

We claim that the function F (y1, . . . , yc), where y1, . . . , yc ∈ Fp are new independent
variables, have approximately the same relative weight as that of f(x) = F (g1(x), . . . , gc(x)).
We bound

|wt(f)− wt(F )| =
|Px∈Fmp [F (g1(x), . . . , gc(x)) 6= 0]−
Py1,...,yc∈Fp [F (y1, . . . , yc)] 6= 0| =
|Px∈Fmp

[
(g1(x), . . . , gc(x)) ∈ F−1(Fp \ {0})

]
−

Py1,...,yc∈Fp
[
(y1, . . . , yc) ∈ F−1(Fp \ {0})

]
| ≤

dist(D(g1, . . . , gc),D(y1, . . . , yc)) =

dist(D(g1, . . . , gc), UFcp) < ε(c).
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Chapter 13

Affine invariant codes, and extension
to Weil bound

In this work we consider linear codes which are locally testable in a sublinear number
of queries. We give the first general family of locally testable codes of exponential size.
Previous results of this form were known only for codes of quasi-polynomial size (e.g.
Reed-Muller codes). We accomplish this by showing that any affine invariant code C over

Fpn of size pp
Ω(n)

is locally testable using poly(logp |C|/n) queries. Previous general result for

affine invariant codes were known only for sparse codes, i.e. codes of size pO(n). The main
new ingredients used in our proof are a new extension of the Weil bound for character sums,
and a Fourier-analytic approach for estimating the weight distribution of affine invariant
codes.

Joint work with Tali Kaufman.

13.1 Introduction

We study in this work families of locally testable codes. Let FN = Fpn be a finite field, where
we think of p as either constant or small. A code is a family of functions C = {f : Fpn → Fp}.
All codes we consider in this work are linear1. The dimension of a code is dim(C) = logp(|C|).

A code is locally testable if there is a randomized algorithm, which when given as input
a function f : Fpn → Fp, probes f in a small number of locations and determines (with high
probability) whether f ∈ C or f is far2 from all codewords of C. A code is q-locally testable
if the number of probes is at most q, where q is sublinear in the code length, i.e. q = o(N).

Most of the study of locally testable codes has been focused on codes testable with
constant query complexity (i.e. q = O(1)) or with poly-logarithmic query complexity (i.e.
q = (logN)O(1)). They appear as low-degree tests in the IP = PSPACE, MIP = NEXP

1A code C = {f : Fpn → Fp} is linear if for any f(x), g(x) ∈ C also h(x) = αf(x) + βg(x) ∈ C where
α, β ∈ Fp.

2If f has distance ε from C, i.e. if ming∈C Prx∈Fpn
[f(x) 6= g(x)] = ε, we require the local test to reject f

with probability at least Ω(ε).
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and PCP = NP theorems, and indeed the work of [GS06] (which was later partly deran-
domized by [BSSVW03]) elucidates their role as the “combinatorial heart” of PCPs.

In general, there is a tradeoff between the rate of the code dim(C)/N and the query
complexity of testing this code. A major open problem in this field is whether one can enjoy
the best of both worlds: a code of constant rate which is locally testable with a constant
query complexity.

One line of research focuses on constructing explicit codes which try to approach this
optimal tradeoff. The best results to date are by Ben-Sasson and Sudan [BSS05] and
Dinur [Din07] (see also Meir [Mei08]) which achieve an explicit binary code of rate 1

(logN)O(1)

which is testable using a constant number of probes.
A second line of research focuses on characterization of general families of codes that are

locally testable [BLR93, RS93, NAR03, JPRZ04, KR04, KS08, KS07, KL05, GKS09, KS10].
Many results in this field apply only to sparse codes over binary fields F2n , which are codes
of dimension O(logN) [KL05, KS07, GKS09, KS10]. Another example is Generalized Reed-
Muller codes which are the family of polynomials f : Fpn → Fp of total degree at most d.

These codes are testable using p
d
p−1 = exp(d) queries, while having dimension O(nd) [NAR03,

JPRZ04, KR04]. Such codes can be locally testable with sublinear number of queries for
d ≤ O(log n), which gives codes of quasi-logarithmic dimension dim(C) ≤ (logN)log logN .

Our work falls into the latter line of research. We exhibit a general family of codes of
almost optimal dimension dim(C) = NΩ(1) which are locally testable with sublinear query
complexity. We achieve this by studying affine invariant codes. A code C = {f : Fpn → Fp}
is affine invariant if it is invariant under affine transformation of the coordinates of input
space. That is, if f(x) ∈ C then also g(x) = f(ax+ b) ∈ C for any a, b ∈ Fpn , a 6= 0. Previous
results [GKS09] showed that sparse affine invariant codes (i.e., codes of size pO(n)) are locally
testable. We significantly extend this to codes of up to exponential size, i.e. of size at most
pp

Ω(n)
.

Theorem 13.1 (Main result). Let C = {f : Fpn → Fp} be a linear code which is affine
invariant of dimension dim(C) ≤ pαn, where α > 0 is an absolute constant. Then C is locally
testable with query complexity q = poly(dim(C)/n) = o(pn). In particular, any sparse affine
invariant code (i.e. with dim(C) = O(n)) is locally testable with constant query complexity
q = O(1). The parameter α can be chosen to be any α < 1/32 for large enough n.

This generalizes previous works in several aspects: our result applies to codes of expo-
nential size exp(Nα), while previous results apply only to codes of polynomial size NO(1)

or quasi-polynomial size exp(logN log logN). Previous results on sparse codes applied only to
binary fields F2n , while our result applies to any field of small characteristic. Note that a
recent result of Ben-Sasson and Sudan [BSS09, Sud10] shows that affine invariant codes that
are testable with constant number of queries cannot have exponential rate. Thus, our testing
result of exponentially large codes cannot be improved to testing with constant locality.

The main new ingredients in our work is a Fourier-analytic approach for estimating
the weight distribution of affine invariant codes, and a new extension of the Weil bound
for character sums of low-degree polynomials. We start by describing our new result for
character sums for polynomials, and then discuss its relation to proving local testability
of affine invariant codes. The proof of our new extension for the Weil bound relies on
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techniques borrowed from additive combinatorics. This demonstrates yet another connection
between additive combinatorics and theoretical computer science. Such connections were
used before to establish results regarding pseudorandom generators [BV07, Lov08, Vio08]
and list-decoding of codes [KLP10].

13.1.1 Character sums

Let F be a finite field. An additive character is a function χ : F → C for which χ(x + y) =
χ(x)χ(y) (and which is not the identically zero function). For example, if F = Fq is a prime

finite field then the additive characters are given by χa(x) = e
2πi
q
ax for a ∈ Fq. In the general

case of F = Fpn , the additive characters are given by χa(x) = e
2πi
p

Tr(ax), where a ∈ Fpn and

the Trace operator Tr : Fpn → Fp is defined as Tr(x) =
∑n−1

i=0 x
pi .

The Weil bound for character sums [Wei48] is a general result regarding character sums
of low-degree polynomials over a finite field F. Let f(x) ∈ F[x] be a univariate polynomial of
degree k. Let χ : F→ C be any additive character. Weil’s bound states that either χ(f(x))
is constant, or is distributed close to uniform when x ∈ F is uniformly chosen.

Theorem 13.2 (Weil bound [Wei48]). Let f(x) be a univariate polynomial over F of degree
≤ |F|1/2−δ. Let χ : F→ C be any additive character. Then either χ(f(x)) is constant for all
x ∈ F, or

|Ex∈F[χ(f(x))]| ≤ |F|−δ.
The Weil bound is very effective to polynomials of degree k �

√
|F|, however it fails for

polynomials of degree k ≥
√
|F|. We establish a general result in fields of small characteristics

Fpn which allows to extend polynomials by a small number of monomials of larger degree,
as long as they have small weight degree.

Definition 13.1 (Weight degree). Let t ∈ {0, . . . , pn − 1}. The weight degree of t is the
hamming weight of the digits of t in base p. That is, let t =

∑n−1
i=0 tip

i be the representation
of t in base p, where 0 ≤ ti ≤ p− 1. The weight degree of t is

wt(t) =
n−1∑
i=0

ti.

The weight degree of a monomial xt is the weight degree of t, and the weight degree of a
univariate polynomial f(x) is the maximal weight degree of a monomial in it with a nonzero
coefficient.

We prove the following extension of the Weil bound in case f(x) is the sum of a low degree
polynomial and a small number of monomials of bounded weight degree (but of arbitrary
degree).

Theorem 13.3 (Extension of the Weil bound). Let f(x) = g(x) + h(x) be a univariate
polynomial over Fpn, where g(x) is a polynomial of degree ≤ |F|1/2−δ and h(x) is the sum of
at most k ≥ 1 monomials, each of weight degree at most d. Let χ : Fpn → C be an additive
character. Then either χ(f(x)) is constant for all x ∈ Fpn, or

|Ex∈F[χ(f(x))]| ≤ |Fpn|−
δ

2d22dk .
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Note that in order to get a meaningful bound, we need our parameters to obey kd22d ≤
O(n). Note that for d ≤ (1− ε) log2(n) we may have k = nO(1). This can be compared to a
relatively recent result of Bourgain [Bou05] of a similar flavor. We state it below informally,
as the exact formulation is somewhat complex, and we will not require it in the paper.

Theorem 13.4 (Bourgain’s extension of Weil bound [Bou05]). Let f(x) = g(x) + h(x) be
a univariate polynomial over a prime finite field Fq, where g(x) is a polynomial of degree
≤ |Fq|1/2−δ and h(x) is the sum of at most k = O(1) monomials, each of degree at most
|Fq|1−ε. Let χ : Fq → C be an additive character. Then either χ(f(x)) is constant for all
x ∈ Fq, or ∣∣Ex∈Fq [χ(f(x))]

∣∣ ≤ |Fq|−Ω(1).

Comparing our result with the result of Bourgain, we note two important advantages of
our work: first, we can handle non-prime finite fields; second, when d ≤ O(log n) is small
enough, we may have k = poly(n) monomials of high degree, while in the result of Bourgain
one can take at most k = O(1) such monomials. In contrast, the result of Bourgain does not
assume a bound on the weight degree of the monomials. The two advantages of our work
are crucial for the application to locally testing of exponentially large affine invariant codes.
Bourgain’s result was used in a similar fashion by Grigorescu, Kaufman and Sudan [GKS09]
to establish a similar result which holds only for sparse affine invariant codes, i.e. codes
of polynomial size. Our new character sum result allows us to extend their techniques to
handle exponentially large affine invariant codes.

13.1.2 Connection between character sums and affine invariant
codes

Affine invariant codes can be characterized by trace codes. Let S ⊆ {0, . . . , pn − 1}. The
S-trace code over Fpn is defined as the family of functions f : Fpn → Fp given by

T (S) =

{(
Tr(
∑
e∈S

aex
e) : Fpn → Fp

)
: ae ∈ Fpn

}
.

where we recall that the Trace function Tr : Fpn → Fp is given by Tr(x) =
∑n−1

i=0 x
pi .

For example, Generalized Reed-Muller codes RM(n, d), which are the family of functions
f : Fnp → Fp where f is an n-variate polynomial of total degree at most d, can be equivalently
characterized as

RM(n, d) = T ({e ∈ {0, . . . , pn − 1} : wt(e) ≤ d}).

We define two important properties of trace codes.

Definition 13.2 (Shift closed). Let S ⊆ {0, . . . , pn− 1}. The set S is said to be shift closed
if, for every e ∈ S, we also have that ep` (mod pn) ∈ S for all ` = 1, . . . , n.

The term shift closed comes from viewing elements e ∈ S as vectors in Fnp , given by the
representation of e in base p. In this case, ep` (mod pn) corresponds to a cyclic shift of the
vector by ` coordinates.
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Definition 13.3 (Shadow closed). Let S ⊆ {0, . . . , pn − 1}. The set S is said to be shadow
closed if the following holds. For any e ∈ S, let e =

∑n−1
i=0 eip

i be the representation of e in
base p. Define the support of e to be the set of nonzero digits of e,

support(e) = {0 ≤ i ≤ n− 1 : ei 6= 0}.

Let e′ be obtained from e by changing some of the non-zero digits of e, i.e.

e′ =
∑

i∈support(e)

e′ip
i.

Then we should have that also e′ ∈ S. That is, S is shadow closed if ∑
i∈support(e)

e′ip
i : e ∈ S, (e′i)i∈support(e) ∈ Fp

 ⊆ S.

A set S is said to be affine closed if it is both shift closed and shadow closed. The
following general result was established by Kafuman and Sudan [KS08]. They show that the
class of affine invariant linear codes is equivalent to the class of trace codes of affine closed
sets.

Theorem 13.5 (Monomial extraction [KS08]). Let C = {f : Fpn → Fp} be an affine invari-
ant linear code. Then there exists an affine closed set S ⊆ {0, . . . , pn−1} such that C = T (S).
Moreover, for any affine closed set S the code T (S) is linear and affine invariant.

Thus, to study affine invariant codes, we need to study trace codes. We now introduce
two notions. The dual of a code C = {f : Fpn → Fp} is defined as

C⊥ =

(g : Fpn → Fp) :
∑
x∈Fpn

f(x)g(x) = 0 ∀f ∈ C

 .

The affine closure of a function g : Fpn → Fp is the set of functions obtained by applying
affine transformations on the coordinates of the input space of f , that is

affine(g) =

{
(g(ax+ b) : Fpn → Fp) : a, b ∈ Fpn

}
.

It is easy to verify that if C is an affine invariant code, and g ∈ C⊥, then in fact affine(g) ⊆ C⊥.
An important case is when in fact affine(g) spans the entire code C⊥.

Definition 13.4 (Single orbit property). Let g ∈ C⊥. We say that C has the single orbit
property for g if the affine closure of g is a spanning set for C⊥, that is if

C = Span(affine(g))⊥.
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We will shortly see that the single orbit property is tightly connected to locally testing
properties of the code C. First, define the weight of g : Fpn → Fp to be the number of
coordinates where g evaluates to a nonzero value,

wt(g) = |{x ∈ Fpn : g(x) 6= 0}|.

The following result was established by Kaufman and Sudan [KS08]. If C is an affine invariant
code which has the single orbit property for a codeword g ∈ C⊥ of small weight, then C can
be locally tested3.

Theorem 13.6 (Theorem 2.9 in [KS08]). Let C = {f : Fpn → Fp} be a linear code which is
affine invariant. Assume there exists g ∈ C⊥ such that C has the single orbit property for g.
Then C can be locally tested with O(wt(g)2) queries.

Hence, to show that C can be locally tested, it is sufficient to demonstrate that C⊥ is
spanned by the orbit of a short codeword under the affine group.

Let C = T (S) for some affine closed set S ⊆ {0, . . . , pn − 1}. The dual code of C is a
dual-trace code dT (S), which can be verified (Claim 13.1) to be

dT (S) =

{
(f : Fpn → Fp) :

∑
x∈Fpn

f(x)xe = 0 ∀e ∈ S
}
.

We need to establish that there exists f ∈ dT (S) of small weight such that
Span(affine(f)) = dT (S). Assume that this is false, i.e. that Span(affine(f)) ( dT (S). Us-
ing the fact that S is affine invariant, we show (Corollary 13.1) that in fact f ∈ dT (S ∪{e})
where e ∈ {0, . . . , pn − 1} \ S has small weight.

Hence, in order to conclude the proof, we will show that for a suitably chosen weight `,
there exist codewords on weight ` in dT (S) which are not in any of dT (S ∪ {e}) for any
e /∈ S which has small weight.

The main tool we develop in order to do so, is a tight estimate on the number of codewords
of weight ` in dual-trace codes. We show the following result.

Lemma (Lemma 13.1, informal statement). Let S ⊆ {0, . . . , pn − 1} be affine closed of
size |S| ≤ pΩ(n). Then there exists `min = poly(|S|) and `max = pΩ(n) , such that for any
`min ≤ ` ≤ `max the following holds. The number of codewords in dT (S) of weight exactly `
is given by

C(p, `)

`!
pn(`−|S′|)(1 + o(1))

where S ′ = {e ∈ S : (p, e) = 1} is the set of elements in S which are co-prime to p, and
where C(p, `) is given by

C(p, `) =

∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
3In fact, the local test for C is performed by computing

∑
f(ax + b)g(x) for a small random subset of

a, b ∈ Fpn . Note that to perform each such test, we only need to query f(x) only on x ∈ Fpn for which
g(x) 6= 0.
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Similar results were previously obtained over binary fields F2n using properties of
Krawtchouk polynomials [KL05, KS07]. Our technique is different, and relies on meth-
ods from additive combinatorics and Fourier analysis. In particular it allows us to extend
the result to arbitrary fields and allows to obtain bounds for a wider range of values of `.
The proof of this lemma relies on the new extension of the Weil bound we establish.

Given the lemma, the proof of Theorem 13.1 can be easily concluded. Recall that we
showed that in order to prove local testability of an affine invariant code T (S), we need to
show that there is a short codeword whose affine closure linearly spans dT (S). We showed
that any f ∈ dT (S) for which this does not occur, is in fact contained in some dT (S ∪ {e})
for some e /∈ S of small weight. Thus, to conclude the proof we need to show that there
exist small weight codewords in

dT (S) \
⋃

e/∈S:e has small weight

dT (S ∪ {e}).

To this end we apply the tight bounds we obtain for the number of codewords of weight `
in dual-trace codes. We first show that if C is affine invariant of size |C| ≤ pp

O(n)
then in fact

C = dT (S) where S is affine invariant of size |S| ≤ pO(n) , so our estimates for the number
of codewords apply for dT (S). Fix a suitable weight `. The number of codewords of weight
` in dT (S) is given by

W` =
C(p, `)

`!
pn(`−|S′|)(1 + o(1)),

where we recall that S ′ = {e ∈ S : (e, p) = 1}. On the other hand, as S is affine closed and
e /∈ S, we can bound the number of codewords of weight ` in any of the codes dT (S ∪ {e})
by

≤ C(p, `)

`!
pn(`−|S′|−1)(1 + o(1)) ≈ p−nW`.

Thus to conclude we just need to verify that the number of distinct e of small weight is
� pn. This then can be verified by a routine calculation.

13.1.3 New extension to the Weil bound

We sketch in high level how we achieve the new extension to the Weil bound. Let f(x) =
g(x) + h(x) be a univariate polynomial over Fpn , where deg(g) ≤ |Fpn|1/2−δ and h(x) is
the sum of k monomials, each of weight degree at most d. We need to prove that either
Tr(f) : Fpn → Fp is a constant function, or that it is highly unbiased (note that proving the
result for the Trace operator implies it immediately for all additive characters).

The analysis divides into two cases: either g has high weight-degree wt(g) ≥ d + 1, or g
has low weight-degree wt(g) ≤ d. The first case is the easier one, and both cases rely on an
analysis of directional derivatives of polynomials. The directional derivative of a polynomial
f(x) in direction y ∈ Fpn is given by fy(x) = f(x + y) − f(x), and iterated derivatives are
defined as fy1,...,yk(x) = (fy1,...,yk−1

)yk(x).
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The case of high weight g The first case, where wt(g) ≥ d + 1 is easy to analyze by
taking enough derivatives that eliminate h(x), and reducing to a theorem of Deligne [Del78],
which is a multivariate analog of Weil’s bound. Specifically, For any y1, . . . , yd+1 one can
verify that since wt(h) ≤ d then

hy1,...,yd+1
≡ 0,

hence fy1,...,yd+1
≡ gy1,...,yd+1

. An iterated application of the Cauchy-Schwarz inequality yields
that ∣∣∣∣Ex∈Fpn [ωTr(f(x))]

∣∣∣∣2d+1

≤
∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1

(x))]

∣∣∣∣
where ω = e

2πi
p . Hence to prove that Tr(f(x)) in unbiased for uniform x, it is sufficient to

prove that Tr(fy1,...,yd+1
(x)) is unbiased for uniform x, y1, . . . , yd+1. We then verify that as g

is of weight degree at least d + 1, it is not eliminated by taking generic d + 1 derivatives,
and we get that fy1,...,yd+1

(x) is a nonzero polynomial in the variables x, y1, . . . , yd+1 of total
degree at most deg(g) ≤ |Fpn|1/2−δ. Moreover, we can prove that Tr(fy1,...,yd+1

(x)) is not a
constant function; hence by Deligne’s theorem we deduce that∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1

(x))]

∣∣∣∣ ≤ |F|−δ
and the bound on the bias of Tr(f(x)) follows.

The case of low weight g The harder case is handling g of small weight wt(g) ≤ d, since
h cannot simply be eliminated by taking enough iterated derivatives, without eliminating f
altogether. We solve this problem by taking a smaller number of derivatives, such that f is
not eliminated, but instead is transformed into a special class of polynomials (p-multilinear
polynomials). We then proceed to study this family of polynomials, and are able to bound
the bias of such polynomials, given that they came from a polynomial f = g + h where g
has low degree and h is the sum of a small number of low weight degree monomials. Most
of the technical challenges of the proof are in this part.

13.1.4 Paper organization

We prove our main result, Theorem 13.1, on the local testing properties of affine invariant
codes in Section 13.2. The proof uses our new extension to the Weil bound, which we prove
in Section 13.3. Both sections are written in a self-contained manner, so that readers that
are interested in the details of only one of these results can read only the relevant section.
We note that throughout the paper we do not attempt to optimize constants.

13.2 Testing of affine invariant codes

We study affine invariant codes in this section. We begin with some definitions and stating
our main theorem formally. We then proceed to prove some properties of affine invariant
codes, and then apply those to prove our main result, Theorem 13.1.
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13.2.1 Basic codes definitions

Let F = Fpn be a finite field. A code is a set of functions C = {f : Fpn → Fp}. A code is called
linear if it forms a linear space, i.e. if f(x), g(x) ∈ C then also h(x) = αf(x) + βg(x) ∈ C
where α, β ∈ Fp. We will only consider linear codes in this paper. For a linear code C, its
dual is the set functions which are normal to all codewords of C.

Definition 13.5 (Dual code). Let C = {f : Fnp → Fp} be some linear code over Fp. The
dual code C⊥ is defined as

C⊥ =

{
(g : Fnp → Fp) :

∑
x∈Fnp

f(x)g(x) = 0 ∀f ∈ C
}
.

Note that the dual of the dual is the original code, i.e. (C⊥)⊥ = C. We next define the
weight and support of a codeword.

Definition 13.6 (Weight and support of codeword). The support of a codeword f : Fnp → Fp
is the set of x ∈ Fnp for which f(x) 6= 0,

support(f) = {x ∈ Fpn : f(x) 6= 0}.

The weight of a codeword is the size of its support,

wt(f) = |support(f)| = |{x ∈ Fpn : f(x) 6= 0}|.

13.2.2 Trace codes

Definition 13.7 (trace codes). Let S ⊆ {0, . . . , pn − 1}. The S-trace code is a code whose
codewords are evaluations of functions f : Fpn → Fp given by

T (S) =

{(∑
e∈S

Tr(αex
e) : Fpn → Fp

)
: αe ∈ Fp

}
,

where the Trace function Tr : Fpn → Fp is given by Tr(x) =
∑n−1

i=0 x
pi.

For example, dual-BCH codes of weight t correspond to the special case

dBCH(t) = T ({1, 2, . . . , t}).

Generalized Reed-Muller codes over Fnp of total degree d are equivalent to

RM(n, d) = T ({e ∈ {0, . . . , pn − 1} : wt(e) ≤ d}).

The following fact gives some simple properties of the Trace operator. For a proof, see
any standard Algebra textbook, e.g. [BM65].

Fact 13.1 (Facts on the trace operator). Let Tr(x) =
∑n−1

i=0 x
pi be the trace operator over

Fpn. Then
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1. For any x ∈ Fpn, Tr(x) ∈ Fp. That is, Tr : Fpn → Fp.

2. The trace operator is linear. That is, for any x, y ∈ Fpn and a, b ∈ Fp we have

Tr(ax+ by) = aTr(x) + bTr(y).

3. The trace operator is invariant under the Frobenius map. That is, for any x ∈ Fpn and
0 ≤ i ≤ n− 1 we have

Tr(xp
i

) = Tr(x).

4. Let x ∈ Fpn, and assume that for any α ∈ Fpn we have Tr(αx) = 0. Then x = 0.

We denote the dual codeword to T (S) by dT (S) = T (S)⊥. The following claim charac-
terizes dual-trace codes.

Claim 13.1 (Characterization of dual-trace codes). Let S ⊆ {0, . . . , pn − 1}. Then

dT (S) =

{
(g : Fpn → Fp) :

∑
x∈Fpn

g(x)xe = 0 ∀e ∈ S
}
.

Proof. Let g : Fpn → Fp be a function such that
∑
g(x)xe = 0 for all e ∈ S. We first verify

that g ∈ dT (S). To do so, we need to show that
∑

x f(x)g(x) = 0 for any f ∈ T (S). Let
f =

∑
e∈S Tr(αex

e) ∈ T (S). Then we have∑
x∈Fpn

f(x)g(x) =
∑
x∈Fpn

∑
e∈S

Tr(αex
e)g(x)

=
∑
e∈S

Tr(αe
∑
x∈Fpn

xeg(x)) = 0,

where we used the fact that Trace is a linear operator over Fpn , thus Tr(ax+ by) = aTr(x) +
bTr(y) for any a, b ∈ Fp and x, y ∈ Fpn . Thus, to prove the claim we need to establish that
for any g ∈ dT (S) and any e ∈ S we have

∑
g(x)xe = 0. Note that for any αe ∈ Fpn we

have f(x) = αex
e ∈ T (S), thus we have∑

x∈Fpn

Tr(αex
eg(x)) = 0.

Let z =
∑

x∈Fpn g(x)xe. We obtained that for any αe ∈ Fpn we have

Tr(αez) = 0.

This can only hold if z = 0, thus we conclude that we must have that
∑

x g(x)xe = 0 for all
e ∈ S.

The next claim shows that if S1 ⊆ S2 then T (S1) ⊆ T (S2) and dT (S1) ⊇ dT (S2).

Claim 13.2 (Monotonicity of trace codes). Let S1 ⊆ S2 ⊆ {0, . . . , pn − 1}. Then we have
the following inclusions
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1. T (S1) ⊆ T (S2).

2. dT (S1) ⊇ dT (S2).

Proof. The claim follows immediately from the definition of trace codes and of dual codes.

We will consider in the following few claims only trace codes for S ⊆ {1, . . . , pn− 1}, i.e.
we disallow 0 ∈ S. We will later also deal with sets containing 0. We now define irreducible
degrees and reduced forms. We will see that it is enough to study trace codes over reduced
form sets.

Definition 13.8 (Irreducible degrees and reduced form). We define R as the set of co-prime
elements to p,

R = {1 ≤ e ≤ pn − 1 : (e, p) = 1}.

For 1 ≤ e ≤ pn− 1 define its reduced form e′ ∈ R as follows. Let e = pkm where (p,m) = 1.
Then the reduced form of e is e′ = m. For a subset S ⊆ {1, . . . , pn − 1} define its reduced
form S ′ ⊆ R as S ′ = {e′ : e ∈ S}.

Claim 13.3 (Trace codes are defined over reduce form sets). Let S ⊆ {1, . . . , pn − 1}. Let
S ′ ⊆ R be the reduced form of S. Then dT (S) = dT (S ′) and T (S) = T (S ′).

Proof. By Claim 13.1 we have that g ∈ dT (S) iff
∑
g(x)xe = 0 for all e ∈ S. For any

0 ≤ k ≤ n− 1 we have(∑
g(x)xe

)pk
=
∑

g(x)xep
k

=
∑

g(x)xep
k (mod pn),

where we used the facts that x → xp
k

is a linear map over Fpn , and that for any x ∈ Fpn
we have xp

n
= x. Hence we get that

∑
g(x)xe = 0 iff

∑
g(x)xe

′
= 0 for any e′ such that

e′ = epk (mod pn). This shows that dT (S) = dT (S ′), since for every element e ∈ S there
is some e′ = epk (mod pn) ∈ S ′ and vice versa. Since dT (S) = dT (S ′) we also get by the
uniqueness of dual codes that T (S) = dT (S)⊥ = dT (S ′)⊥ = T (S ′).

The next claim establishes the size of trace codes defined over reduced form sets S ⊆ R.

Claim 13.4 (Size of trace codes). Let S ⊆ {1, . . . , pn − 1}. Let S ′ ⊆ R be the reduced form
of S. Then |T (S)| = pn|S

′|.

Proof. By Claim 13.3 we know that T (S) = T (S ′). The codewords of T (S ′) are functions
of the form

f(x) =
∑
e∈S′

Tr(αex
e),

where αe ∈ Fpn . The number of combinations of {αe : e ∈ S ′} is |Fpn||S
′| = pn|S

′|. Hence to
conclude we need to show any two such settings are distinct. Since the code is linear, it is
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enough to show that if the coefficients αe are not all zero, then the codeword is not the all
zeros codeword, i.e. there is some x ∈ Fpn such that∑

e∈S′
Tr(αex

e) 6= 0.

Let p(x) =
∑

e∈S′ Tr(αex
e), and note that

p(x) =
∑
e∈S′

n−1∑
i=0

αp
i

e x
epi

=
∑
e∈S′

n−1∑
i=0

αp
i

e x
epi (mod pn),

where we used the facts that Tr(x) =
∑n−1

i=0 x
pi as well as the identity xt = xt (mod pn) which

holds for any t. Since S ′ ⊆ R is a set of
all the monomials xep

i
for e ∈ S ′ are disjoint. Hence p(x) is not the all zeros polynomial.

As deg(p) ≤ pn − 1 there must exist some x ∈ Fpn such that p(x) 6= 0, and the codeword
defined by f is not the all zeros codeword.

13.2.3 Characterization of affine invariant codes by trace codes

We start by recalling affine invariant codes, which are codes that are closed under an affine
transformation of the input space coordinates.

Definition 13.9 (Affine closure, and affine invariant codes). Let f : Fpn → Fp be a function.
The affine closure of f is the set of functions

affine(f) =

{
(f(ax+ b) : Fpn → Fp) : a, b ∈ Fpn

}
.

A code C = {f : Fpn → Fp} is called affine invariant if for any f ∈ C, we have affine(f) ⊆ C.
A codeword f ∈ C affinely generates C if

C = Span(affine(f)).

We can characterize linear codes which are affine invariant as a special subfamily of trace
codes. To this end we will require some definitions. We first define shift closure of a set,
which is tightly related to the reduced form we previously defined.

Definition 13.10 (Shift closed). Let e ∈ {0, . . . , pn − 1}. The shift closure of e is defined
as the set

shift(e) = {ep` (mod pn) : ` = 1, . . . , n}.
The shift closure of a set S ⊆ {0, . . . , pn − 1} is defined as the union of the shift closures of
its elements,

shift(S) = ∪e∈Sshift(e).

A set S ⊆ {0, . . . , pn − 1} is said to be shift closed if S = shift(S).
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The term shift closed comes from viewing elements e ∈ S as vectors in Fnp , given by the
representation of e in base p. In this case, ep` (mod pn) corresponds to a cyclic shift of the
vector by ` coordinates. The following claim shows that trace codes are invariant under shift
closure.

Claim 13.5. Let S ⊆ {0, . . . , pn − 1}. Then

dT (S) = dT (shift(S)), T (S) = T (shift(S)).

Proof. The proof is identical to the proof of Claim 13.3.

We next define the notion of shadow closed sets.

Definition 13.11 (Shadow closed). Let S ⊆ {0, . . . , pn−1}. The set S is said to be shadow
closed if the following holds. For any e ∈ S, let e =

∑n−1
i=0 eip

i be the representation of e in
base p. Define the support of e to be the set of nonzero digits of e,

support(e) = {0 ≤ i ≤ n− 1 : ei 6= 0}.

Let e′ be obtained from e by changing some of the non-zero digits of e, i.e.

e′ =
∑

i∈support(e)

e′ip
i.

Then we should have that also e′ ∈ S. That is, S is shadow closed if ∑
i∈support(e)

e′ip
i : e ∈ S, (e′i)i∈support(e) ∈ Fp

 ⊆ S.

Definition 13.12 (Affine closed). A set S ⊆ {0, . . . , pn−1} is affine closed if it is both shift
closed and shadow closed.

We recall the following theorem of Kaufman and Sudan [KS08] that we presented in the
introduction. It shows that affine invariant linear codes are equivalent to trace codes over
affine closed sets.

Theorem (Theorem 13.5: Equivalence of affine invariant codes and trace codes of affine
closed sets). Let C = {f : Fpn → Fp} be an affine invariant linear code. Then there exists
an affine closed set S ⊆ {0, . . . , pn− 1} such that C = T (S). Moreover, for any affine closed
set S the code T (S) is linear and affine invariant.

13.2.4 Weight distribution of affine invariant codes

Theorem 13.5 tells us that in order to study affine invariant codes, it suffices to study trace
codes of affine closed sets. In this subsection we establish the following lemma, which gives
a tight estimate on the number of codewords in dT (S) for affine closed sets S. For the
statement of the lemma recall that R = {1 ≤ e ≤ pn − 1 : (e, p) = 1} is the set of elements
co-prime to p.

211



www.manaraa.com

Lemma 13.1 (Weight distribution of dual trace affine closed codes). There exist absolute
constants c, c′ > 1 such that the following is true. Let S ⊆ {0, . . . , pn − 1} be affine closed
of size |S| ≤ 1

c′
pn/c. Then there exists `min = c′|S ∩ R|c and `max = 1

c′
pn/c, such that for any

`min ≤ ` ≤ `max the following holds. The number of codewords in dT (S) of weight exactly `
is given by

C(p, `)

`!
pn(`−|S∩R|)(1 + ε)

where C(p, `) is defined as

C(p, `) =

∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
and |ε| ≤ p−n/2 � 1. In particular, one can take c = 8 and c′ = 16.

We start by showing a general bound on the weight degree of elements of affine closed
sets, in terms of the size of the set.

Claim 13.6 (Weight degree bound on affine closed sets). Let S ⊆ {0, . . . , pn − 1} such that
S is affine closed. Then for any e ∈ S,

wt(e) ≤ logp |S ∩R|+ 1.

Proof. Let S ′ = S ∩ R. Let e ∈ S be of weight k ≥ 1. By taking some shift of e we may
assume e ∈ R (that is, 0 ∈ support(e)), hence e ∈ S ′ = S ∩R. Consider the set

E ′ =

{ ∑
i∈support(e)

e′ip
i : e′i ∈ Fp, e′0 6= 0

}
.

Note that as S is shadow closed, we have E ′ ⊆ S. Moreover since e′0 6= 0 we have E ′ ⊆ R,
hence E ′ ⊆ S ′ = S ∩R. Thus |E ′| ≤ |S ′|. On the other hand,

|E ′| = (p− 1)pwt(e)−1.

Hence we conclude that wt(e) ≤ logp(
p
p−1
|S ′|) ≤ logp |S ′|+ 1.

We will need the following simple claim.

Claim 13.7 (Trace is not constant). Let f(x) =
∑

e∈R αex
e be a nonzero polynomial. Then

Tr(f(x)) : Fpn → Fp is not a constant function.

Proof. Assume for contradiction that Tr(f(x)) = a for all x ∈ Fpn . Let q(x) = Tr(f(x))− a.
We have

q(x) = −a+
n−1∑
i=0

(
∑
e∈R

αex
e)p

i

= −a+
n−1∑
i=0

∑
e∈R

(αe)
pixep

i (mod pn).

Since e ∈ R all the degrees epi (mod pn) are distinct and different from 0. Thus q(x) is not
the zero polynomial. Since deg(q) ≤ pn−1 we have that there must be x such that q(x) 6= 0,
hence Tr(f(x)) 6= a.
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The next lemma is a general lemma, which estimates the number of elements in dT (S)
where S is a relatively small set of elements of small weight degree. We will then show that
the lemma can be applied to any affine invariant set S which is not too large.

Lemma 13.2 (Weight distribution of dual trace codes of reduced form sets). There exists
an absolute constant c > 1 such that the following is true. Let S ⊆ R be such that for any
e ∈ S its weight degree is at most wt(e) ≤ d. There exist `min = c|S|2d22d and `max = pn/c,
such that for any `min ≤ ` ≤ `max the following holds.

1. The number of codewords in dT (S) of weight exactly ` is given by

(p− 1)`

`!
pn(`−|S|)(1 + ε).

where |ε| ≤ p−n/2 � 1.

2. The number of codewords in dT (S ∪ {0}) of weight exactly ` is given by

C(p, `)

`!
pn(`−|S|)(1 + ε).

where |ε| ≤ p−n/2 and C(p, `) is defined as

C(p, `) =

∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` : v1 + . . .+ v` = 0

}∣∣∣∣.
In particular, one can take c = 8.

Proof. We start by proving the estimate for dT (S). For any v = (v1, . . . , v`) ∈ {1, . . . , p−1}`
define the sets

A`(v) = {(α1, . . . , α`) ∈ F`pn :
∑̀
i=1

viα
e
i = 0 ∀e ∈ S}

and
B`(v) = {(α1, . . . , α`) ∈ A`(v) : α1, . . . , α` are all distinct}.

Let f : Fnp → Fp be a function f ∈ dT (S), such that f has weight exactly `. Equivalently,
there are distinct points α1, . . . , α` ∈ Fpn such that

∑
f(αi)α

e
i = 0 for all e ∈ S. We can

identify f uniquely by the list of points (α1, . . . , α`) and the evaluation of f on these points
v = (f(α1), . . . , f(α`)) ∈ {1, . . . , p − 1}`. Since the order of α1, . . . , α` does not matter,
and they are all distinct, there are `! elements in ·∪B`(v) which correspond to f , (i.e. these
elements correspond to all orderings of α1, . . . , α`). Thus we obtain the following identity,

Number of codewords in dT (S) of weight ` =
1

`!

∑
v∈{1,...,p−1}`

|B`(v)|.

Hence, to conclude the proof we will show that |B`(v)| ≈ pn(`−|S|). In fact, we will first show
that |A`(v)| ≈ pn(`−|S|) and then deduce the estimate for |B`(v)|.

213



www.manaraa.com

Fix some v ∈ {1, . . . , p− 1}`. We will now show an estimate on |A`(v)|, where the main
tool we use is Fourier analysis. Let α = (αe : e ∈ S) ∈ FSpn , and define φα : Fpn → Fp by

φα(x) = Tr(
∑
e∈S

αex
e).

Take any tuple (x1, . . . , x`) ∈ F`pn , and consider

µ(x1, . . . , x`) = Eα∈FSpn
[
ωv1φα(x1)+...+v`φα(x`)

]
,

where ω = e
2πi
p is a p-root of unity. We claim that if (x1, . . . , x`) ∈ A`(v) then µ(x1, . . . , x`) =

1, and if (x1, . . . , x`) 6∈ A`(v) then µ(x1, . . . , x`) = 0. To see that,

µ(x1, . . . , x`) = Eα∈FSpn
[
ωTr(

∑
e∈S αe(v1xe1+...+v`x

e
`))
]

=
∏
e∈S

Eαe∈Fpn
[
ωTr(αe(v1xe1+...+v`x

e
`))
]

=
∏
e∈S

1v1xe1+...+v`x
e
`=0 = 1(x1,...,x`)∈A`(v).

Hence we have

|Fpn|−`|A`(v)| = Ex1,...,x`∈Fpn [µ(x1, . . . , x`)]

= Ex1,...,x`∈FpnEα∈FSpn
[
ωTr(

∑
e∈S αe(v1xe1+...+v`x

e
`))
]

= Eα∈FSpn
∏̀
i=1

Exi∈Fpn
[
ωTr(

∑
e∈S αevix

e
i )
]

We partition the expectation to the cases where α = 0S and α 6= 0S. When α = 0S then
for all i = 1, . . . , ` we have that

Exi∈Fpn
[
ωTr(

∑
e∈S αevix

e
i )
]

= 1.

Consider now any α 6= 0S and any i = 1, . . . , `. As vi ∈ Fp \ {0} then also αvi 6= 0S. We
will show that Tr(

∑
e∈S αevix

e
i ) has small bias . To this end we apply Theorem 13.3. Let

f(x) = g(x) + h(x) for g(x) = 0 and h(x) =
∑

e∈S αevix
e
i . As S ⊆ R and not all αe = 0,

we have by Claim 13.7 that Tr(f) is not constant. Our condition on the set S was that
wt(e) ≤ d for any e ∈ S. Hence we get by Theorem 13.3 (for δ = 1/2) that∣∣Ex∈Fpn [ωTr(

∑
e∈S αevix

e)
]∣∣ ≤ |Fpn|− 1

4|S|d22d .

Hence we deduce that
|A`(v)| = |Fpn|`−|S|(1 + ε)

where |ε| ≤ |Fpn|
|S|−`· 1

4|S|d22d . Thus, if we take ` ≥ 8|S|2d22d we get that |ε| ≤ p−n|S| ≤ p−n �
1.
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To conclude, we need to derive an estimate on |B`(v)|. Let C`(v) = A`(v) \ B`(v). We
will show that |C`(v)| � |B`(v)|, and hence |B`(v)| ≈ |A`(v)|. To derive this, note that if
(α1, . . . , α`) ∈ C`(v), then α1, . . . , α` are not all distinct, that is, αi = αj for some distinct

i < j. Define v(i,j) ∈ {1, . . . , p − 1}`−1 by ”joining” αi and αj, i.e. v
(i,j)
a = va for 1 ≤ a < i

and i < a < j, v
(i,j)
i = vi + vj, v

(i,j)
a = va+1 for a > j. Then we can identify uniquely

(α1, . . . , α`) ∈ C`(v) with α(i,j) = (α1, . . . , αj−1, αj+1, . . . , α`) ∈ A`−1(v(i,j)). Hence we get

|C`(v)| ≤
∑
i<j

|A`−1(vi,j)| ≤
(
`

2

)
|A`−1(·)| ≤ `2|Fpn|`−1−|S|(1 + ε) =

`2

pn
|A`(v)|(1 + ε).

Hence we get that
|B(v)| = |Fpn|`−|S|(1 + ε′)

where ε′ = `2

pn
+ ε. Thus if ` ≤ pn/8 we get that `2

pn
� p−n/2. Hence we finished the proof of

the first claim.
The proof of the second claim is completely analogous, except if we consider dT (S∪{0}),

we have that additional requirement that v1 + . . . + v` = 0. Thus one should not consider
A`(v) for all v ∈ (Fp \ {0})`, but only those corresponding to v ∈ C(p, `). Thus we have

Number of codewords in dT (S ∪ {0}) of weight ` =
1

`!

∑
v∈C(p,`)

|B`(v)|.

and the proof follows by the estimates we proved on |B`(v)|.

We can now deduce Lemma 13.1 from Claim 13.6 and Lemma 13.2.

Proof of Lemma 13.1. Let S ⊆ {0, . . . , pn − 1} be affine closed. We have that

dT (S) = dT ((S ∩R) ∪ {0}).

By Claim 13.6 the maximal weight of elements in S is at most

d ≤ logp |S ∩R|+ 1.

Applying Lemma 13.2, we get that for `min = 16 · |S∩R|4 ≥ 8|S∩R|2d22d and `max = 1
16
pn/4,

we get that for every `min ≤ ` ≤ `max the number of codewords of weight ` in dT (S) =
dT ((S ∩R) ∪ {0}) is

C(p, `)

`!
pn(`−|S∩R|)(1 + ε)

where |ε| ≤ p−n/2.

13.2.5 Trace codes of exponential size are generated by a single
orbit

We prove in this subsection that any affine invariant linear code of up to exponential size is
generated by a single orbit of a dual codeword. Combining this with Theorem 13.6 we get
that any such code is locally testable, which prove our main result, Theorem 13.1. We now
state the main theorem we prove in this subsection.
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Theorem 13.7 (Affine invariant codes are generated by a single orbit). There exist absolute
constants 0 < α < 1 and c, c′ ≥ 1 such that the following is true. Let C = {f : Fpn → Fp}
be an affine invariant linear code, such that dim(C) ≤ 1

c′
pαn. Then there exists f ∈ C⊥ such

that
affine(f)⊥ = C

and of weight
wt(f) ≤ c′(dim(C)/n)c.

In particular, one may choose α = 1/16, c = 4 and c′ = (2p)8.

Let C = T (S) be an affine invariant code where S ⊆ {0, . . . , pn − 1} is affine closed.
We start by showing that if some f ∈ C⊥ = dT (S) does not generate dT (S), then in fact
f ∈ dT (S∪{e}) where e ∈ {1, . . . , pn−1}\S has small weight (Corollary 13.1). From this and
the exact estimates for the weight distribution for dual trace codes we derive Theorem 13.7.
Before proving Corollary 13.1 we will require two technical claims.

Claim 13.8. Let S ⊆ {0, . . . , pn−1} be affine closed. Let f ∈ dT (S) be a codeword which
does not affinely generate dT (S), i.e.

affine(f) ( dT (S).

Then
affine(f) = dT (T )

for some affine closed T ) S.

Proof. The code affine(f) is an affine invariant code which is a proper subset of dT (S). By
Theorem 13.5 we know that affine(f) = dT (T ) for some affine closed T ⊆ {0, . . . , pn − 1}.
Since dT (T ) ( dT (S) we must have that T ) S.

Claim 13.9. Let S ( T ⊆ {0, . . . , pn − 1} such that both S and T are affine closed. Then
there exist an element e ∈ (T \ S) ∩R such that

wt(e) ≤ logp |S ∩R|+ 2.

Proof. Let S ′ = S ∩R and T ′ = T ∩R. We have S ′ ( T ′ as otherwise, if S ′ = T ′, we would
have S = affine(S ′) = affine(T ′) = T .

Let k = blogp |S ′|c+ 2. We argue there is e ∈ T ′ \ S ′ of weight at most k. Otherwise, let
e ∈ S ′ \ T ′ such that wt(e) > k. Consider the set

E = shadow(e) ∩R =

 ∑
i∈support(e)

e′ip
i : e′i ∈ Fp, e′0 6= 0

 ,

where we use the fact that since e ∈ R then 0 ∈ support(e). Note that by definition, E ⊆ T ′,
since T is affine closed hence in particular shadow closed.
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Let e′ ∈ E ⊆ T ′ such that wt(e′) = k (by setting wt(e)− k digits of e in base p to zero).
Consider the set

E ′ = shadow(e′) ∩R =

 ∑
i∈support(e′)

e′′i p
i : e′′i ∈ Fp, e′′0 6= 0

 .

Note that since |E ′| = (p − 1)pwt(e′)−1 = (p − 1)pk−1 > |S ′| we cannot have that e′ ∈ S ′.
Hence we found an element e′ ∈ T ′ \ S ′ such that wt(e′) ≤ k.

Corollary 13.1. Let S ⊆ {0, . . . , pn−1} be affine closed. Let f ∈ dT (S) be a codeword which
does not affinely generate dT (S), i.e.

affine(f) ( dT (S).

Then there must exist e ∈ R \ S of weight wt(e) ≤ logp |S ∩R|+ 2 such that

f ∈ dT (S ∪ {e}).

Proof. By Claim 13.8 we have affine(f) = dT (T ) where T ) S. By Claim 13.9 there is
e ∈ (T \ S) ∩R ⊆ R \ S such that wt(e) ≤ logp |S ∩R|+ 2. Hence we conclude sicne

f ∈ dT (T ) ⊆ dT (S ∪ {e}).

We are now ready to prove Theorem 13.7.

Proof of Theorem 13.7. Let C be a linear affine invariant code. By theorem 13.5 we have
C = T (S) where S ⊆ {0, . . . , pn − 1} is affine closed. By Claims 13.2, 13.3 and 13.4 we have
that

|C| = T ((S ∩R) ∪ {0}) ≤ |T (S ∩R)| = pn|S∩R|.

Hence we need to prove there is a codeword f ∈ dT (S) of weight |S∩R|c whose affine closure
spans dT (S). Let ` be an appropriate weight to be determined later. We now count the
number of codewords in dT (S) of weight exactly `. To this end we apply Lemma 13.1. The
number of codewords in dT (S) of weight ` (as long as ` is in the permissible range) is given
by

W` =
C(p, `)

`!
pn(`−|S∩R|)(1 + p−Ω(n)).

Let f ∈ dT (S) be such that affine(f) ( dT (S). By Corollary 13.1 we know that there
exists some e ∈ R \ S of weight wt(e) ≤ k, where k ≤ logp(|S ∩ R|) + 2, such that f ∈
dT (S ∪ {e}). Let E be the set of all such possible e,

E = {e ∈ R \ S : wt(e) ≤ k}.
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Fix some e ∈ E. Let Se = affine(S ∪ {e}). Note that as e ∈ R \ S we have |Se ∩ R| ≥
|S ∩R|+ 1. Hence for ` in the permissible range for Se we get that the number of codewords
of weight ` in dT (Se) is given by

C(p, `)

`!
pn(`−|Se∩R|)(1 + p−Ω(n)) ≤ p−nW`(1 + p−Ω(n)),

So, as long as |E| � pn, we can deduce that there must exist some f ∈ dT (S) of weight
` which is not in any of dT (S ∪ {e}) for any e ∈ E (in fact, almost all f ∈ dT (S) of weight
` will do). This will establish the theorem. Thus, we need to bound |E|. The following is a
simple bound which is sufficient for our needs.

|E| ≤
k∑
i=1

(
n

i

)
pi ≤ p3n/4

as long as k ≤ n/4.
To conclude we need to show that we can choose ` such that ` ≤ |S ∩ R|c for some

absolute constant c > 0, as long as |S ∩ R| ≤ pαn for some absolute constant α > 0. The
bounds on `min and `max that are required for the application Lemma 13.1 are stricter for Se
than for S, and are given by

|Se| ≤ 1
16
pn/4,

`min ≥ 16|Se ∩R|4,
`max ≤ 1

16
pn/4.

To verify them we need to give an upper bound on |Se| and |Se∩R|. As Se = S ∪affine({e})
we have

|Se| ≤ |S|+ |affine({e})| = |S|+ npk,

|Se ∩R| ≤ |S ∩R|+ |affine({e}) ∩R| ≤ |S ∩R|+ pk.

Note that pk = p2|S ∩ R|. Thus, the bounds for applying Lemma 13.1 are satisfied if we
make sure that

|S| ≤ 1
32p2n

pn/4,

`min ≥ (2p)8|S ∩R|4,
`max ≤ 1

16
pn/4.

Notice that as long as |S| ≤ 1
16p3p

n/16 we have that all the conditions are satisfied (for large

enough n) and that `min ≤ `max. Hence we may choose ` = `min to conclude the proof.
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13.3 Extension of the Weil bound

In this section we prove our new extension to the Weil bound for character sums, which is
one of the key technical ingredients in our proof of the local testability of affine invariant
codes. As this result may be of independent interest, this section is self-contained, and the
interested reader may read this section without relying on Section 13.2.

We recall several definitions and theorems from the introduction, for the sake of self
containment. Let F = Fpn be a finite field. An additive character χ : F → C is a mapping
such that χ(x + y) = χ(x)χ(y) and χ is not identically zero. The following is a classical
result by Weil.

Theorem (Weil bound - Theorem 13.2). Let f(x) be a univariate polynomial over F of
degree |F|1/2−δ. Let χ : F→ C be an additive character. Then either χ(f(x)) is constant or

|Ex∈F[χ(f(x))]| ≤ |F|−δ.

The weight degree of a monomial xt is defined as follows. Let t =
∑n−1

i=0 aip
i be the

representation of t in base p, where 0 ≤ ai ≤ p− 1. The weight degree of xt is defined to be
wt(xt) =

∑
ai. The weight degree of a polynomial f(x) is the maximal weight of a monomial

in f .

Note 13.1. We note that the weight degree of a polynomial can be equivalently defined also
as a derivative degree, defined as follows. The directional derivative of f(x) in direction
y ∈ Fpn is defined as fy(x) = f(x + y) − f(x). Define iterative derivatives in directions
y1, . . . , yk as fy1,...,yk = (fy1,...,yk−1

)yk . The derivative degree of f is the minimal d such that
for any d + 1 derivatives y1, . . . , yd+1 ∈ F, fy1,...,yd+1

(x) ≡ 0. It can be verified that the
derivative degree of a polynomial is exactly its weight degree. We do not prove this here, and
will not require this fact in the proof.

We prove an extension of the Weil bound in case f is the sum of a low degree polynomial
and a small number of monomials of bounded weight (but of arbitrary degree).

Theorem (Extension of the Weil bound - Theorem 13.3). Let f(x) = g(x) + h(x) be a
univariate polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and h(x) is the
sum of at most k ≥ 1 monomials, each of weight degree at most d. Let χ : Fpn → C be an
additive character. Then either χ(f(x)) is constant or

|Ex∈F[χ(f(x))]| ≤ |F|−
δ

2kd22d .

13.3.1 Technical claims

In this subsection we provide some technical claims that will be needed for the proof of
Theorem 13.3.
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The trace operator

The trace operator Tr : Fpn → Fp is defined as Tr(x) =
∑n−1

i=0 x
pi . We give in this subsection

some simple properties of the Trace operator.

Claim 13.10 (Characterization of additive characters). Let χ : Fpn → C be an additive
character. Then there exists a ∈ Fpn such that χ(x) ≡ ωTr(ax) where ω = e2πi/p.

Proof. We first prove that χ(x) = ω`(x) where ` : Fpn → Fp is a linear map. Note that
we must have χ(0) = 1 since χ(0) = χ(0 + 0) = χ(0)2, and we cannot have χ(0) = 0 as
this will imply that χ ≡ 0. Thus, we get that the image of χ is a p-th root of unity since
χ(x)p = χ(px) = χ(0) = 1. Thus we can write χ(x) = ω`(x) for some mapping ` : Fpn → Fp.
The mapping ` is linear since

ω`(x+y) = χ(x+ y) = χ(x)χ(y) = ω`(x)+`(y).

Now we argue that any linear mapping ` : Fpn → Fp can be represented as `(x) ≡ Tr(ax)
for some a ∈ Fpn . This is proved by a counting argument. Each linear map ` : Fpn → Fp
can be uniquely identified by its image on a basis for Fpn as a linear space over Fp. Thus,
the number of such linear mappings is at most pn. On the other hand, for each a ∈ Fpn
the mapping x → Tr(ax) is linear (since Trace is a linear mapping), and the total number
of theses mappings is the number of distinct a ∈ Fpn , that is pn. To conclude we just need
to show that for any distinct a 6= b ∈ Fpn the mappings Tr(ax) and Tr(bx) are distinct.
Equivalently, since Trace is a linear mapping, we need to show that Tr((a − b)x) 6≡ 0.
This is clear however because the Trace mapping is not identically zero and a − b 6= 0 is
invertible.

Claim 13.11 (Trace of a p-power is unbiased). For every c 6= 0 and 0 ≤ L ≤ n− 1 we have

Ex∈Fpn [ωTr(cxp
L

)] = 0.

Proof. We have Tr(cxp
L
) = Tr(cp

n−L
x), so it suffices to prove the claim for L = 0. Let

` : Fpn → Fp defined as `(x) = Tr(cx). The mapping ` is linear, and as it is not identically
zero, its output is uniform over Fp. Thus we have that Ex∈Fpn [ω`(x)] = 0.

Reduced forms

We define in this subsection reduced forms of polynomials. We show that for studying
character sums it is the sufficient to restrict to reduced polynomials. We start by consid-
ering univariate polynomials, and then generalize the definitions and claims to multivariate
polynomials.

Definition 13.13 (Reduced form: univariate polynomials). Let m(x) = axt be a monomial.
We say m is reduced if p - t. If t = pkr for p - r we define the reduced form of m(x) to
be m(x)p

n−k ≡ ap
n−k

xr. A constant term c ∈ Fpn is reduced if c ∈ Fp, otherwise its reduced
form is Tr(c) ∈ Fp. We say a polynomial is reduced if all its monomials are reduced, and the
reduced form of a polynomial is the sum of the reduced forms of its monomials.
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Claim 13.12 (Equivalence of reduced form: univariate polynomials). Let f(x) be a univari-
ate polynomial over F. Let f ′(x) be its reduced form. Then

1. Tr(f(x)) ≡ Tr(f ′(x)).

2. deg(f ′) ≤ deg(f).

3. wt(f ′) ≤ wt(f).

Proof. For a monomial m(x) = axt with t = pkr, p - r, let m′(x) = ap
n−k

xr be its reduced
form. Note thatm′(x) = m(x)p

n−k
. Since Tr(x) = Tr(xp) we have that Tr(m(x)) = Tr(m′(x))

for all x ∈ F. Note that wt(m′) = wt(m) and deg(m′) = r ≤ t = deg(m). For a general
polynomial f(x) =

∑
mi(x) we have that f ′(x) =

∑
m′i(x). Hence we get that Tr(f) ≡

Tr(f ′), and since cancelations among the m′i can only reduce the degree and weight degree
of f ′, we get that deg(f ′) ≤ deg(f) and wt(f ′) ≤ wt(f).

Claim 13.13 (Trace of reduced non-constant polynomial is non-constant: univariate poly-
nomials). Let f(x) be a non-constant reduced univariate polynomial. Then Tr(f(x)) is not
constant.

Proof. Assume for contradiction that Tr(f(x)) ≡ c for some c ∈ Fp. Let f(x) = a0+
∑

i∈I aix
i

where a0 ∈ Fp, ai ∈ Fpn for i ∈ I and I ⊆ {0, . . . , pn − 1} is nonempty such that p - i for all
i ∈ I. Define g(x) = Tr(f(x))− c. We have that

g(x) = −c+ Tr(f(x)) = (a0 − c) +
∑
i∈I

n−1∑
j=0

ap
j

i x
ipj = (a0 − c) +

∑
i∈I

n−1∑
j=0

ap
j

i x
ipj (mod pn).

Notice that all the monomials in this representation are distinct, since all i ∈ I are not
divisible by p. Thus this is a non-zero polynomial of degree at most pn− 1, and so it cannot
evaluate to zero on all elements of Fpn .

We now generalize some of the definitions and claims to multivariate polynomials. When
we refer to the degree of a multivariate polynomial we always mean is its total degree. The
weight degree of a monomial xe11 . . . xess is the sum of the weight degrees of the variables, that
is wt(xe11 . . . xess ) = wt(xe11 ) + . . . + wt(xess ). The weight degree of a multivariate polynomial
is the maximal weight degree of its monomials.

Note 13.2. As in the univariate case, the weight degree of a multivariate degree is equivalent
to its derivative degree, which is defined in an analogous way to the univariate case.

Definition 13.14 (Reduced form: multivariate polynomials). Let m(x1, . . . , xs) =
axe11 . . . xess be a monomial. We say m is reduced if p - gcd(e1, . . . , es) (that is, at least
one ei is co-prime to p). If ei = pkri where p - gcd(r1, . . . , rs) we define the reduced form
of m(x1, . . . , xs) to be ap

n−k
xr11 . . . xrss . We say a polynomial is reduced if all its monomials

are reduced, and the reduced form of a polynomial is the sum of the reduced forms of its
monomial.
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Claim 13.14 (Equivalence of reduced form: multivariate polynomials). Let f(x1, . . . , xs) be
a multivariate polynomial over F. Let f ′(x1, . . . , xs) be its reduced form. Then

1. Tr(f(x1, . . . , xs)) ≡ Tr(f ′(x1, . . . , xs)).

2. deg(f ′) ≤ deg(f).

3. wt(f ′) ≤ wt(f).

Proof. The proof is identical to the proof of Claim 13.14 for the univariate case.

Claim 13.15 (Trace of reduced non-constant polynomial is non-constant: multivariate
polynomials). Let f(x1, . . . , xs) be a non-constant reduced multivariate polynomial. Then
Tr(f(x1, . . . , xs)) is not constant.

Proof. The proof is very similar to the proof of Claim 13.13 for the univariate case. If f
is not a constant polynomial, that is if I is not empty, then for any c ∈ Fp the polynomial
Tr(f(x1, . . . , xs)) − c is a non-zero polynomial of individual degree at most pn − 1 in each
variable, and such a polynomial cannot evaluate to zero on all points in (Fpn)s.

Properties of derivatives

Let f(x) be a univariate polynomial. For every s ≥ 1 define the s-iterated derivative polyno-
mial of f , ∆f(x; y1, . . . , ys), to be the multivariate polynomial in variables x, y1, . . . , ys ∈ F
defined as

∆f(x; y1, . . . , ys) = fy1,...,ys(x) =
∑
I⊆[s]

(−1)|I|+sf(x+
∑
i∈I

yi).

Derivatives play a crucial role in the proof of Theorem 13.3. We study in this subsection
some of their properties, and prove some structural results on polynomials of the form
∆f(x; y1, . . . , ys).

Claim 13.16 (Derivation maintains degree). Let m(x) = xt be a monomial. Then for any k,
all the monomials appearing in ∆m(x; y1, . . . , yk) have total degree t (or ∆m(x; y1, . . . , yk) ≡
0).

Proof. The polynomial ∆m(x; y1, . . . , yk) is a linear combination of (x+
∑

i∈I yi)
t for subsets

I ⊆ [k], each of which is homogeneous of degree t.

We show that the character sum of a polynomial can be bounded by a character sum of
its iterated derivatives polynomial.

Claim 13.17 (Bias can be bounded by bias of derivatives). For any univariate polynomial
f(x) and s ≥ 1 ∣∣Ex∈F[ωTr(f(x))]

∣∣ ≤ (Ex,y1,...,ys∈F[ωTr(∆f(x;y1,...,ys))]
)1/2s
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Proof. Consider first the case s = 1. We have∣∣Ex∈F[ωTr(f(x))]
∣∣2 = Ex,x′∈F[ωTr(f(x))ωTr(f(x′))] =

Ex,x′∈F[ωTr(f(x))−Tr(f(x′))] = Ex,y∈F[ωTr(f(x+y))−Tr(f(x))] =

Ex,y∈F[ωTr(f(x+y)−f(x))] = Ex,y∈F[ωTr(∆f(x;y))].

Hence ∣∣Ex∈F[ωTr(f(x))]
∣∣ ≤ (Ex,y∈F[ωTr(∆f(x;y))]

)1/2
.

For s > 1 we prove the result by induction. By the base case of s = 1 and the Cauchy-
Schwartz inequality, we have that∣∣Ex∈F[ωTr(f(x))]

∣∣2s ≤ (Ex,y1∈F[ωTr(∆f(x;y1))]
)2s−1

≤ Ey1∈F

[(
Ex∈F[ωTr(∆f(x;y1))]

)2s−1]
.

For every value of y1 ∈ F we have by the s− 1 case that(
Ex∈F[ωTr(∆f(x;y1))]

)2s−1

≤ Ex,y2,...,ys∈F[ωTr(∆f(x;y1,...,ys))],

hence we get that ∣∣Ex∈F[ωTr(f(x))]
∣∣2s ≤ Ex,y1,y2,...,ys∈F[ωTr(∆f(x;y1,...,ys))].

We now define a special family of multivariate polynomials that will play an important
role in the proof. Such polynomials arise when taking d-iterated derivatives from a polyno-
mial of weight degree d.

Definition 13.15 (p-multilinear polynomials). A multivariate polynomial f(x1, . . . , xs) over

Fpn is p-multilinear if all its monomials are of the form xp
i1

1 . . . xp
is

s . In particular, if it is
nonzero it has weight degree s.

Claim 13.18 (Structure of derivatives of monomials). Let m(x) = xt be a monomial of
weight degree d. The d-iterated derivatives polynomial ∆m(x; y1, . . . , yd) of m is given as
follows. Let t =

∑k
j=1 a`jp

`j where 1 ≤ a`1 , . . . , a`k ≤ p − 1 and
∑
a` = d. Let S be the

family of all partitions of {1, . . . , d} into k subsets of sizes a`1 , . . . , a`s, that is

S = {(S1, . . . , Sk) : S1 ·∪ . . . ·∪Sk = {1, . . . , d}, |S1| = a`1 , . . . , |Sk| = a`k}.

Then we have

∆m(x; y1, . . . , yd) = c
∑

(S1,...,Sk)∈S

k∏
j=1

∏
i∈Sj

(yi)
p`j .

where c =
∏k

j=1 a`j ! 6= 0 in F. In particular, ∆m is a non-zero p-multilinear polynomial in
y1, . . . , yd which does not depend on x.
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Proof. We have

∆m(x; y1, . . . , yd) =
∑
I⊆[d]

(−1)d+|I|m(x+
∑
i∈I

yi) =
∑
I⊆[d]

(−1)d+|I|(x+
∑
i∈I

yi)
t.

Substituting t =
∑
a`jp

`j , and using the linearity of the Frobenius map x→ xp
`j

we get that

∆m(x; y1, . . . , yd) =
∑
I⊆[d]

(−1)d+|I|
k∏
j=1

(xp
`j

+
∑
i∈I

(yi)
p`j )a`j .

Since
∑
a`j = d we get that ∆m is a degree-d polynomial in the Frobenius images of

x, y1, . . . , yd, i.e. in the monomials {xpj , (y1)p
j
, . . . , (yd)

pj : 0 ≤ j ≤ n− 1}.
We first claim that ∆m does not depend on x, and is p-linear in y1, . . . , yd. That is, all

the monomials of ∆m consist of a product (y1)p
j1 . . . (yd)

pjd , where 0 ≤ j1, . . . , jd ≤ n − 1.
Otherwise, there exists some monomial in ∆m which does not depend on at least one of
y1, . . . , yd. This is because all monomials of ∆m are products of d Frobenius images of
x, y1, . . . , yd, and by the pigeonhole principle, if either a single variable yi has two images
appearing, or an image of x appears in the monomial, then there must exists a variable yj
not participating in the monomial.

Assume w.l.o.g that ∆m contains monomials in which y1 does not participate. Substi-
tuting y1 = 0 in the definition of ∆m, since ∆f(x; 0) = f(x)− f(x) ≡ 0 for any polynomial
f , we get that

∆m(x; 0, y2, . . . , yd) ≡ 0.

Hence, if there exist monomials in ∆m(x; y1, . . . , yd) which do not depend on y1, they are
left intact by the substitution y1 = 0, while all monomials depending on y1 vanish. Thus
since ∆m(x; 0, y2, . . . , yd) ≡ 0 all the monomials in ∆m(x; y1, . . . , yd) must depend on y1.

We have thus proved that ∆m(x; y1, . . . , yd) does not depend on x, and is p-linear in
y1, . . . , yd. To conclude we need to compute the exact form of ∆m(x; y1, . . . , yd). Any mono-
mial depending on all y1, . . . , yd must come from the term corresponding for I = {1, . . . , d},

(x+
∑
i∈[d]

yi)
t =

k∏
j=1

(xp
`j

+
∑
i∈[d]

(yi)
p`j )a`j .

The individual degree of each yi is some p`j , and there are exactly a`j variables among
y1, . . . , yd which has individual degree p`j . Since the number of variables d is exactly the sum∑
a`j , all the monomials depending on all of y1, . . . , yd must be of the form

∏k
j=1

∏
i∈Sj(yi)

p`j ,

where (S1, . . . , Sk) ∈ S is a partition of {1, . . . , d} into sets of sizes a`1 , . . . , a`k . The coefficient

of the monomial
∏k

j=1

∏
i∈Sj(yi)

p`j is equal to the number of times this monomial appears in

the last term, which is exactly
∏k

j=1 a`j !.

Claim 13.19 (Derivative of reduced monomial is nonzero). Let m(x) be a nonzero reduced
monomial of weight degree d. Then ∆m(x; y1, . . . , yd) is a nonzero reduced polynomial.
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Proof. Let m(x) = xt for t =
∑
a`jp

`j . Since m is reduced we must have a0 6= 0. By
Claim 13.18 we know that

∆m(x; y1, . . . , yd) = c
∑

(S1,...,Sk)∈S

k∏
j=1

∏
i∈Sj

(yi)
p`j .

Thus any monomial of ∆m(x; y1, . . . , yd) contains at least one variable of degree 1, thus it is
reduced.

Claim 13.20 (Derivative of distinct reduced monomials is distinct). Let m′(x),m′′(x) be
two distinct monomials of weight degree d. Then ∆m′(x; y1, . . . , yd) and ∆m′′(x; y1, . . . , yd)
are nonzero polynomials which do not share any common monomial.

Proof. Let m′(x) = xt
′

and m′′(x) = xt
′′

for t′ 6= t′′. By Claim 13.18 we have that
∆m′(x; y1, . . . , yd) is a nonzero polynomial such that all its monomials have total degree
exactly t′. Similarly ∆m′′(x; y1, . . . , yd) is a nonzero polynomial such that all its mono-
mials have total degree exactly t′′. Since t′ 6= t′′ the polynomials ∆m′(x; y1, . . . , yd) and
∆m′′(x; y1, . . . , yd) contain no common monomial.

Claim 13.21 (High derivative vanishes). Let f(x) be a polynomial of weight degree at most
d− 1. Then ∆m(x; y1, . . . , yd) ≡ 0.

Proof. It is enough to prove the claim for monomials. Let m(x) = xt be some monomial, and
let d′ = wt(m) ≤ d− 1 be its weight degree. By Claim 13.18 we have that ∆m(x; y1, . . . , yd′)
does not depend on x, thus

∆m(x; y1, . . . , yd′ , yd′+1) = ∆m(x+ yd′+1; y1, . . . , yd′)−∆m(x; y1, . . . , yd′) ≡ 0.

Lemma 13.3 (Highest non-vanishing derivative). Let f(x) be a nonzero reduced polynomial
of weight degree d. Then ∆f(x; y1, . . . , yd) is a nonzero reduced polynomial which does not
depend on x and is p-linear in y1, . . . , yd.

Proof. Let f(x) =
∑
ctx

t. Let m(x) = ctx
t be some monomial of f . If wt(m) ≤ d − 1

then by Claim 13.21 we have ∆m(x; y1, . . . , yd) ≡ 0. Thus it is enough to consider just the
monomials of weight degree exactly d. By Claim 13.19 the derivative polynomial of each
reduced monomial of weight degree d is a reduced polynomial, and these polynomials for two
distinct monomials contain no shared monomials, and so cannot cancel each other. Thus the
derivative polynomial ∆f(x; y1, . . . , yd) is a nonzero reduced polynomial. By Claim 13.18 is
does not depend on x, and it is p-linear in y1, . . . , yd.

Lemma 13.4 (General non-vanishing derivatives). Let f(x) be a nonzero reduced polynomial
of weight degree d. For any k ≤ d the polynomial ∆f(x; y1, . . . , yk) is a nonzero reduced
polynomial in x, y1, . . . , yk.
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Proof. Let f(x) =
∑
ctx

t. Let m(x) = ctx
t be some monomial of f . Observe that all mono-

mials in the polynomial ∆m(x; y1, . . . , yk) have the same total degree t. Thus, if m(x) is
reduced then so is ∆m(x; y1, . . . , yk), since if xe0ye11 . . . yekk is a monomial of ∆m(x; y1, . . . , yk)
which is not reduced, then p | gcd(e0, . . . , ek). However t = e0 + . . . + ek and since m(x) is
reduced we have that p - t. Contradiction, hence ∆m(x; y1, . . . , yk) must be reduced. Hence,
we get that if f(x) is a reduced polynomial, then ∆f(x; y1, . . . , yk) is also reduced. To con-
clude we need to prove that ∆f(x; y1, . . . , yk) is nonzero. Assume by contradiction it is zero;
then so is ∆f(x; y1, . . . , yd) =

∑
I⊆{k+1,...,d}(−1)|I|+d−k∆f(x +

∑
i∈I yi; y1, . . . , yk). However

by Lemma 13.3 we know that if f is a nonzero reduced polynomial, then ∆f(x; y1, . . . , yd)
is nonzero. Hence also ∆f(x; y1, . . . , yk) must be nonzero.

Additional claims

We give in this subsection some more claims we will require. The first is the Schwarz-Zippel
lemma.

Claim 13.22 (Schwarz-Zippel). Let f(x1, . . . , xs) be a polynomial over F of total degree e.
Then

Pr
x1,...,xs∈F

[f(x1, . . . , xs) = 0] ≤ e

|F|
.

The second result we will need is a theorem of Deligne [Del78] which is a multivariate
analog of Weil’s bound.

Theorem 13.8 (Deligne theorem [Del78]). Let f(x1, . . . , xs) be a multivariate polyno-
mial over F of degree |F|1/2−δ. Let χ : F → C be an additive character. Then either
χ(f(x1, . . . , xs)) is constant or

|Ex1,...,xs∈F[χ(f(x))]| ≤ |F|−δ.

13.3.2 The case of high weight g

In this subsection we prove Theorem 13.3 in the case that g has high weight degree, wt(g) ≥
d + 1. This is captured by the following lemma, which we prove in this subsection. This is
the easier case for Theorem 13.3.

Lemma 13.5 (The case of high weight g). Let f(x) = g(x) + h(x) be a nonzero reduced
univariate polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and weight
degree at least d+ 1, and h(x) has weight degree at most d. Then∣∣Ex∈F[ωTr(f(x))]

∣∣ ≤ |F|− δ

2d+1 .

Proof. The polynomial f is nonzero reduced and of weight degree at least d + 1. By
Lemma 13.4 we know that ∆f(x; y1, . . . , yd+1) is nonzero and reduced. However, since
wt(h) ≤ d we have that ∆h(x; y1, . . . , yd+1) ≡ 0 by Claim 13.21, hence we get that
∆f(x; y1, . . . , yd+1) = ∆g(x; y1, . . . , yd+1). Also, since derivation cannot increase total de-
gree, we have that deg(∆f(x; y1, . . . , yd+1)) ≤ deg(g) ≤ |F|1/2−δ.
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So, we have that f ′(x, y1, . . . , yd+1) = ∆f(x; y1, . . . , yd+1) is a nonzero reduced polynomial
of degree at most |F|1/2−δ. By Claim 13.15 we have that Tr(f ′) is a non-constant function.
Thus by Deligne’s Theorem (Theorem 13.8) we get that is must be highly unbiased, that is∣∣∣Ex,y1,...,yd+1∈F[ωTr(f ′(x,y1,...,yd+1))]

∣∣∣ ≤ |F|−δ.
To conclude we apply Claim 13.17 to get that

∣∣Ex∈F[ωTr(f(x))]
∣∣ ≤ ∣∣∣Ex,y1,...,yd+1∈F[ωTr(f ′(x,y1,...,yd+1))]

∣∣∣ 1

2d+1 ≤ |F|−
δ

2d+1 .

13.3.3 The case of low weight g

In this subsection we prove Theorem 13.3 in the case that g has low weight degree, wt(g) ≤ d.
This is captured by the following lemma, which we prove in this subsection. This is the harder
case for Theorem 13.3.

Lemma 13.6 (The case of low weight g). Let f(x) = g(x) + h(x) be a nonzero reduced
univariate polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and weight
degree at most d, and h(x) has weight degree d and is the sum of k monomials. Then

Ex∈F[ωTr(f(x))] ≤ |F|−
δ

d22dk
+O(1/n).

To prove Lemma 13.6 we require some claims.

Claim 13.23 (Structure of derivative of g). Let g(x) be a polynomial of degree at most
|F|1/2−δ and weight degree at most d. For L = dn(1/2 − δ)e there exists a p-multilinear
polynomial u(y2, . . . , yd) such that

Tr(∆g(x; y1, . . . , yd)) ≡ Tr(yp
L

1 · u(y2, . . . , yd)).

and such that deg(u) ≤ p2L ≤ |F|1−2δ+2/n.

Proof. By linearity, it suffices to show that for every monomial m(x) appearing in g, there

exists a p-multilinear polynomial um(y2, . . . , yd) such that Tr(∆m(x; y1, . . . , yd)) ≡ Tr(yp
L

1 ·
um(y2, . . . , yd)) and deg(um) ≤ p2L.

Let m(x) = cxt be such a monomial. If wt(m) < d we have by Claim 13.21 that
∆m(x; y1, . . . , yd) ≡ 0. Otherwise assume that wt(m) = d. By Claim 13.18 we know that
∆m(x; y1, . . . , yd) does not depend on x and is p-multilinear in y1, . . . , yd. Moreover, if
t =

∑k
j=1 a`jp

`j where 1 ≤ a`j ≤ p− 1 we know that

∆m(x; y1, . . . , yd) =
k∑
j=1

yp
`j

1 wj(y2, . . . , yd)
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where wj(y2, . . . , yd) is a homogeneous p-multilinear polynomial of total degree t−p`j . Since
t ≤ |F|1/2−δ we have that `1, . . . , `k ≤ n(1/2− δ) ≤ L. Thus, taking um(y2, . . . , yd) to be

um(y2, . . . , yd) =
k∑
j=1

wj(y2, . . . , yd)
pL−`j

we get that

Tr(yp
L

1 · um(y2, . . . , yd)) ≡
k∑
j=1

Tr(yp
L

1 wj(y2, . . . , yd)
pL−`j ) ≡

k∑
j=1

Tr(yp
`j

1 wj(y2, . . . , yd)) = Tr(∆m(x; y1, . . . , yd)).

To conclude we need to bound deg(um). Since deg(wj) ≤ deg(m) ≤ pn(1/2−δ) and L− `j ≤ L
we get that deg(um) ≤ deg(m) · pL ≤ p2L.

Claim 13.24 (Structure of derivative of h). Let h(x) be a polynomial of weight degree d
which is the sum of k monomials. For every 0 ≤ L ≤ n − 1 there exists a p-multilinear
polynomial v(y2, . . . , yd) such that

Tr(∆h(x; y1, . . . , yd)) ≡ Tr(yp
L

1 · v(y2, . . . , yd)).

and the number of distinct total degrees of monomials appearing in v is at most kd.

Proof. By linearity, it suffices to show that for every monomial m(x) appearing in h, there

exists a p-multilinear polynomial vm(y2, . . . , yd) such that Tr(∆m(x; y1, . . . , yd)) ≡ Tr(yp
L

1 ·
vm(y2, . . . , yd)) and the monomials appearing in vm have at most d distinct total degrees.

Let m(x) = cxt be such a monomial. If wt(m) < d we have by Claim 13.21 that
∆m(x; y1, . . . , yd) ≡ 0. Otherwise assume that wt(m) = d. By Claim 13.18 we know that
∆m(x; y1, . . . , yd) does not depend on x and is p-multilinear in y1, . . . , yd. Moreover, if
t =

∑k
j=1 a`jp

`j where 1 ≤ a`j ≤ p− 1 we know that

∆m(x; y1, . . . , yd) =
k∑
j=1

yp
`j

1 wj(y2, . . . , yd)

where wj(y2, . . . , yd) is a homogeneous p-multilinear polynomial of total degree t− p`j . Let

vm(y2, . . . , yd) =
k∑
j=1

wj(y2, . . . , yd)
pL−`j+n

where we reduce individual powers of y2, . . . , yd modulo pn (that is, we replace each yei with
ye mod pn

i , which are equivalent as functions over the field Fpn). Thus we get that

Tr(yp
L

1 · vm(y2, . . . , yd)) ≡
k∑
j=1

Tr(yp
L

1 wj(y2, . . . , yd)
pL−`j+n

) ≡

k∑
j=1

Tr(yp
`j

1 wj(y2, . . . , yd)) = Tr(∆m(x; y1, . . . , yd)).

228



www.manaraa.com

To conclude we need to bound the number of distinct total degrees of monomials appearing

in vm. Each polynomial wj is homogeneous, and so also wp
L−`j+n

j is homogenous, hence
contributing a unique total degree to monomials in vm. As the number of distinct wj is
bounded by k ≤ d we get the required bound.

Claim 13.25 (Covering argument for a single element). Let 0 ≤ e ≤ pn − 1 such that
wt(e) = d. For 0 ≤ s ≤ n− 1 define es = e · ps mod pn, such that also 0 ≤ es ≤ pn − 1. For
a ≤ n let

S = {0 ≤ s ≤ n− 1 : es ≥ pn−a}.

Then |S| ≤ a · d.

Proof. For every 0 ≤ e ≤ pn − 1 let ~e ∈ {0, . . . , p − 1}n denote the vector corresponding to
the base-p representation of e, that is e =

∑n−1
i=0 ~e(i)p

i. Observe that ~es is just the cyclic shift
of ~e by s coordinates, that is ~es(i) = ~e(i− s (mod n)). Note that the weight of e is just the
hamming weight of ~e, and that es ≥ pn−a if and only if the vector ~es contains some nonzero
entry in the indices n−a ≤ i ≤ n−1. As ~e contains only d nonzero entries, there are at most
a · d cyclic shift of ~e such that some of these entries moves to indices i ∈ {n− a, . . . , n− 1}.
Thus we get that |S| ≤ a · d.

Claim 13.26 (Covering argument for sum of monomials). Let h(y1, . . . , yb) be a polyno-
mial over Fpn of weight degree at most d, such that the number of distinct total degrees of
its monomial is z. Let hs(y1, . . . , yb) = h(y1, . . . , yb)

ps reducing each individual degree of
y1, . . . , yb modulo pn. Then for every a there exists 0 ≤ s ≤ a such that

deg(hs) < pn−b
a
dz
c.

Proof. Let q = b a
dz
c. Let {e1, . . . , ez} be the set of total degrees occurring in monomials of

h. The number of 0 ≤ s ≤ n− 1 such that (ei · ps mod pn) ≥ pn−q is bounded by d · q ≤ a/z
by Claim 13.25. Thus, there are at most a values for s such that for some ei we have
ei · ps mod pn ≥ pn−q. Since there are a+ 1 possible values for 0 ≤ s ≤ a, by the pigeonhole
principle there exists a value for which for all i = 1, . . . , k,

(ei · ps mod pn) < pn−q

hence we get that deg(hs) < pn−q.

Claim 13.27 (Structure of derivative of f). Let f(x) = g(x) + h(x) be a nonzero reduced
univariate polynomial over Fpn, where g(x) is a polynomial of degree |F|1/2−δ and weight
degree at most d, and h(x) has weight degree d and is the sum of k monomials. Then there
exists M ∈ {0, . . . , n− 1} and a p-multilinear polynomial r(y2, . . . , yd) such that

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
M

1 · r(y2, . . . , yd))

and deg(r) ≤ |F|1−
2δ

d2k+1
+3/n

.
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Proof. Let L = dn(1/2−δ)e. By Claim 13.23 there is a p-multilinear polynomial u(y2, . . . , yd)

such that Tr(∆g(x; y2, . . . , yd)) ≡ Tr(yp
L

1 · u(y2, . . . , yd)) and deg(u) ≤ p2L. By Claim 13.24

there is a p-multilinear polynomial v(y2, . . . , yd) such that Tr(∆h(x; y2, . . . , yd)) ≡ Tr(yp
L

1 ·
v(y2, . . . , yd)) and the number of distinct total degrees of monomials in v is bounded by kd.

For s define rs(y2, . . . , yd) = ps(u(y2, . . . , yd) + v(y2, . . . , yd)) where individual degrees of
y2, . . . , yd are reduced modulo pn, and set a = αn to be determined later. We will show there
exists 0 ≤ s ≤ n − 2L − a such that deg(rs) ≤ pn−a. This will establish the result as for
every s,

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
L+s

1 rs(y2, . . . , yd)).

First, notice that since deg(u) ≤ p2L we have that for any 0 ≤ s ≤ n− 2L− a we have that

deg(up
s

) ≤ deg(u) · ps ≤ p2L+s ≤ pn−a.

We now move to consider v. By Claim 13.26 we have that there exists 0 ≤ s ≤ n− 2L− a
such that if we let vs(y2, . . . , yd) = v(y2, . . . , yd)

ps reducing individual degrees modulo pn, we
have that

deg(vs) ≤ pn−b
n−2L−a
d2k

c.

Combining the two bounds, we get that

deg(rs) ≤ max(pn−a, pn−b
n−2L−a
d2k

c).

Setting a = bn−2L−d2k
d2k+1

c to optimize the bound we get that

deg(rs) ≤ pn−a ≤ p
n(1− 2δ

d2k+1
)+3
.

We are now ready to prove Lemma 13.6.

Proof of Lemma 13.6. We will bound the bias of Tr(f(x)) by the bias of
Tr(∆f(x; y1, . . . , yd)). By Claim 13.17 we have that∣∣Ex∈F[ωTr(f(x))]

∣∣ ≤ ∣∣Ex,y1,...,yd∈F[ωTr(f(x;y1,...,yd))]
∣∣1/2d .

To bound the bias of Tr(∆f(x; y1, . . . , yd)), we apply Claim 13.27. We have

Tr(∆f(x; y1, . . . , yd)) ≡ Tr(yp
M

1 · r(y2, . . . , yd))

where deg(r) ≤ |F|1−
2δ

d2k+1
+3/n

. Moreover since f is nonzero and reduced, then by Lemma 13.3
∆f(x; y1, . . . , yd) is nonzero, hence r(y2, . . . , yd) must also be nonzero.

Whenever y2, . . . , yd are such that r(y2, . . . , yd) 6= 0, we have that

Ey1∈F[ωTr(yp
M

1 ·r(y2,...,yd))] = 0 by Claim 13.11. The probability that r(y2, . . . , yd) = 0 is
bounded by Claim 13.22 by

Pr
y2,...,yd∈F

[r(y2, . . . , yd) = 0] ≤ deg(r)

|F|
≤ |F|−

2δ
d2k+1

+3/n
.
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Combining the results, we get that∣∣Ex∈F[ωTr(f(x))]
∣∣ ≤ |F|− 2δ

(d2k+1)2d
+ 3

2dn ≤ |F|−
δ

d22dk
+O(1/n).
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Part V

Property testing for polynomials

232



www.manaraa.com

Chapter 14

The inverse conjecture for the Gowers
norm is false

Let p be a fixed prime number, and N be a large integer. The ’Inverse Conjecture for
the Gowers norm’ states that if the ”d-th Gowers norm” of a function f : FNp → F is
non-negligible, that is larger than a constant independent of N , then f can be non-trivially
approximated by a degree d − 1 polynomial. The conjecture is known to hold for d = 2, 3
and for any prime p. In this paper we show the conjecture to be false for p = 2 and for
d = 4, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but
whose correlation any polynomial of degree 3 is exponentially small.

Essentially the same result (with different correlation bounds) was independently ob-
tained by Green and Tao [GT07]. Their analysis uses a modification of a Ramsey-type
argument of Alon and Beigel [AB01] to show inapproximability of certain functions by low-
degree polynomials.

We observe that a combination of our results with the argument of Alon and Beigel
implies the inverse conjecture to be false for any prime p, for d = p2.

Joint work with Roy Meshulam and Alex Samorodnitsky.

14.1 Introduction

We consider multivariate functions over finite fields. The main question of interest here would
be whether these functions can be non-trivially approximated by a low-degree polynomial.

Fix a prime number p. Let F = Fp be the finite field with p elements. Let ξ = e
2πi
p be

the primitive p-th root of unity. Denote by e(x) the exponential function taking x ∈ F to
ξx ∈ C. For two functions f, g : FN → F, let 〈f, g〉 := Exe(f(x)− g(x)).

Definition 14.1. A function f is non-trivially approximable by a degree-d polynomial if

| 〈f, g〉 | > ε

for some polynomial g of degree at most d in F[x1...xN ].
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More precisely, in this definition we are looking at a sequence fN of functions and of
approximating low-degree polynomials gN in N variables, and let N grow to infinity. In this
paper, the remaining parameters, that is the field size p, the degree d and the offset ε are
fixed, independent of N .

A counting argument shows that a generic function cannot be approximated by a polyno-
mial of low degree. The problems of showing a specific given function to have no non-trivial
approximation and of constructing an explicit non-approximable function have been exten-
sively investigated, since solutions to these problems have many applications in complexity
(cf. discussion and references in [AB01, VW08, BV07])

This paper studies a technical tool that measures distance from low-degree polynomials.
This is the Gowers norm, introduced in [Gow01]. For a function f : FN → F and a vector
y ∈ Fn, we take fy to be the directional derivative of f in direction y by setting

fy(x) = f(x+ y)− f(x)

For a k-tuple of vectors y1...yk we take the iterated derivative in these directions to be

fy1...yk =
(
fy1...yk−1

)
yk

It is easy to see that this definition does not depend on the ordering of y1...yk.
The k-th Gowers ”norm” ‖f‖Uk of f is

(Ex,y1...yk [e (fy1...yk(x))])1/2k

More accurately, as shown in [Gow01], this is indeed a norm of the associated complex-valued
function e(f) (for k ≥ 2).

It is easy to see that ‖f‖Ud+1 is 1 iff f is a polynomial of degree at most d. This is just
another way of saying that all order-(d + 1) iterative derivatives of f are zero if and only if
f is a polynomial of degree at most d. It is also possible to see [Gow01] that | 〈f, g〉 | > ε
for g of degree at most d, implies ‖f‖Ud+1 > ε. That is to say, if f is non-trivially close to a
degree-d polynomial, this can be detectable via an appropriate Gowers norm.

This discussion naturally leads to the inverse conjecture [GT08, Sam07, Tao05], that is if
(d+1)-th Gowers norm of f is non-trivial, then f is non-trivially approximable by a degree-d
polynomial. This conjecture is easily seen to hold for d = 1 and has been proved also for
d = 2 [GT08, Sam07]. It is of interest to prove this conjecture for higher values of d.

In this paper we show this conjecture, which we will refer to as the ’Inverse Conjecture for
the Gowers norm’, or, informally, as ICGN, to be false. Let Sn be the elementary symmetric
polynomial of degree n in N variables, that is

Sn(x) =
∑

S⊆[N ], |S|=n

∏
i∈S

xi

We prove two claims about symmetric polynomials. Note that here and below a constant is
absolute if it does not depend on N .

First, we show Gowers norms of some symmetric polynomials to be non-trivial.
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Theorem 14.1. There is an absolute positive constant ε such that for any prime p

‖S2p‖Up+2 > ε,

Here S2p is viewed as a function over F = Fp.

Two versions of this result will be useful later.

• A special case p = 2.
‖S4‖U4 > ε (14.1)

• An easy generalization: for any n ≥ 2p,

‖Sn‖Un−p+2 > ε (14.2)

In the second claim we show a specific symmetric polynomial to have no non-trivial
approximation by polynomials of lower degree.

Theorem 14.2. Let p = 2. For any polynomial g of degree 3 holds

| 〈S4, g〉 | < exp{−αN} (14.3)

We conjecture the second claim of the theorem to be true for any prime number p,
replacing 3 with p+ 1 and 4 with 2p.

The combination of (14.1) and (14.3) shows ICGN to be false for p = 2 and d = 4.

14.1.1 Related work

Our results have a large overlap with a recent work of Green and Tao [GT07].
The paper of Green and Tao has two parts. In the first part ICGN is shown to be true

when f is itself a polynomial of degree less than p and d < p. In the second part, the
conjecture is shown to be false in general. In particular the symmetric polynomial S4 is
shown to be a counterexample for p = 2 and d = 4.

To proof of non-approximability of S4 by lower-degree polynomials in [GT07] uses a
modification of a Ramsey-type argument due to Alon and Beigel [AB01]. Very briefly, this
argument shows that if a function over F2 has a non-trivial correlation with a multilinear
polynomial of degree d, then its restriction to a subcube of smaller dimension has a non-trivial
correlation with a symmetric polynomial of degree d. The problem of inapproximability by
symmetric polynomials turns out to be easier to analyze.

This argument gives a somewhat weaker bounds for non-inapproximability of S4, in that
it shows 〈S4, g〉 < log−c(N) for any degree-3 polynomial g and for an absolute constant c > 0.

On the other hand, this argument is more robust than our inapproximability argument.
We observe below that it can be readily extended to the case of general prime p and, combined
with (14.2), show ICGN to be false for all p.
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14.1.2 The case of a general prime field

We briefly observe here that a minor adaptation of the Alon-Beigel argument, together with
(14.2), show the symmetric polynomial Sp2 to have a non-negligible (p2)-nd Gowers norm over
Fp and to have no good approximation by lower-degree polynomials. In that, Sp2 provides a
counterexample to ICGN for any prime p.

Indeed, by monotonicity of the Gowers norms ([GT08]), and since p ≥ 2, a direct impli-
cation of (14.2) gives

‖Sp2‖Up2 > ε

On the other hand, let g be a polynomial of degree less than p2 in N variables such that
〈Sp2 , g〉 > ε. Note that the Alon-Beigel argument (as given in [AB01] and in [GT07]) does
not seem to be immediately applicable in this case, since g does not have to be multilinear.
A way around this obstacle, is to observe, via an averaging argument, that there is a copy
of an N ′-dimensional boolean cube {0, 1}N ′ , such that restrictions S ′ and g′ of Sp2 and of
g on this subcube satisfy 〈S ′, g′〉 > ε′, and N ′, ε′ depend linearly on N, ε′. Without loss
of generality assume the coordinates of the boolean cube to be {1...N ′} and consider the
functions S ′, g′ as functions in variables x1, ..., xN ′ (with some fixed assignment of values to

variables xi, i > N ′). Now, S ′ =
∑p2

i=0 aiSi is a symmetric polynomial of degree p2 over FN ′ ,
with ai = 1, and g′ is a polynomial of a degree smaller than p2. Our gain is in that now
g′ can be replaced by a multilinear polynomial coinciding with g′ on the boolean cube, and
hence having a non-trivial correlation with S ′ on the boolean cube.

Now, the Alon-Beigel argument can be applied to show that the symmetric polynomial
Sp2 has a non-trivial correlation with a symmetric polynomial h of a smaller degree over
the boolean cube {0, 1}N ′ viewed as a subset of FN ′ . This, however, couldn’t be true due
to a theorem of Lucas, which implies that for a boolean vector x with Hamming weight
w =

∑N ′

i=1 xi, the value Sp2(x) depends only on the 3-rd digit in the representation of w in
base p, while the value of h depends only on the first 2 digits.

This completes the argument. We conclude with an observation that this argument
directly extends to Spk for any k > 1.

Here is a brief overview of the rest of the paper. Section 14.2 defines relevant notions
and contains proofs of several technical claims. Theorem 14.1 is proved in Section 14.3.
Theorem 14.2 is proved in Section 14.4.

14.2 Some useful notions and claims

14.2.1 Some multilinear polynomials and their properties

In this sub-section we introduce and discuss certain polynomials over the finite field F. These
polynomials can be conveniently viewed as multi-linear functions on matrices whose entries
are elements of F, or formal variables with values in the field. A basic object we consider
is a rectangular n × N matrix, N ≥ n. A matrix M with rows r1...rn will be denoted by
M [r1...rn]. Sometimes there will be repeated rows. In such a case we consider a partition
λ = (λ1...λk) of [n], that is λi are (possibly empty) subsets of [n], whose disjoint union is
[n]. We denote by Mλ[r1...rk] the matrix whose rows in positions indexed by elements of λi
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equal ri. Note that the partition λ is ordered, in that the ordering of the sets λi is relevant.
We use the notation {λ1...λk} for an unordered partition.

First, we introduce the ”symmetric” function S. We define S(M) to be the sum of all
the permanental minors of M , that is

S(M) :=
∑

C⊆[N ],|C|=n

Per (MC) ,

where MC is an n × n submatrix of M which is obtained by deleting all the columns of M
except these with indices in C.

Let λ = (λ1...λk) be a partition of [n], and set `i = |λi|. Clearly S (Mλ) depends only

on the cardinalities `i of λi. This leads to the notation M
[
r

(`1)
1 ...r

(`k)
k

]
which denotes the

matrix in which the row r1 appears `1 times, followed by `2 appearances of the row r2 and
so on. In this notation, therefore

S
(
M(λ1...λk)[r1...rk]

)
= S

(
M
[
r

(|λ1|)
1 ...r

(|λk|)
k

])
The second matrix function we consider is the ”forward” function F, with

F(M [r1...rn]) =
∑

C⊆[N ],|C|={j1<j2<...<jn}

n∏
i=1

ri (ji)

Here ri(j) denote the j-th coordinate of the vector r.
To connect the two notions, observe that

S(M [r1...rn]) =
∑
σ

F(M [rσ1 ...rσn ])

where σ runs over all permutations on n items.
The last function we consider is a ”hybrid” function H which has some ’symmetric’ and

some ’forward’ properties. Let λ = (λ1...λk) be an ordered partition of [n] with k terms. For
another such partition θ = (θ1...θk) of [n] write θ ∼ λ if |θ1| = |λ1|,...,|θk| = |λk|. We define

H
(
Mλ[∇∞...∇‖]

)
=

∑
C⊆[N ],|C|={|∞<|∈<...<|\}

∑
θ∼λ

‖∏
t=∞

∏
〉∈θt

∇t
(
|〉
)

An alternative view of the functions S,F and H might be helpful at this point. Consider the
set of paths which are one-to-one functions from [n] to [N ]. Let us call a path ρ monotone on
a subset {i1 < i2 < ... < i`} of [n] if ρ (i1) < ρ (i2) < ... < ρ (i`). A path is (fully) monotone
if it is monotone on [n]. Then, for a partition λ = (λ1...λk) of [n] and an n × N matrix
M = Mλ,

S(M) =
∑
all ρ

n∏
i=1

Mi,ρ(i)
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F(M) =
∑

monotone ρ

n∏
i=1

Mi,ρ(i)

H(M) =
∑

ρ monotone on λ1...λk

\∏
〉=∞

M〉,ρ(〉)

Note that for the function H, similarly to the symmetric function S, holds

H
(
M(λ∞...λ‖)[∇∞...∇‖]

)
= H

(
M
[
∇(|λ∞|)
∞ ...∇(|λ‖|)

‖

])
Observe also that if λ = ({1}...{n}) then S(M) = H(M). If λ = ({[n]}) then F(M) = H(M)
and S(M) = n! · F(M) = n! · H(M). For a general λ = (λ0...λk)

S(M) =

(
k∏
t=1

|λt|!

)
· H(M) (14.4)

Note that this is an identity in F. In particular, if one of the terms λi has cardinality at
least p then S(M) = 0 and (14.4) provides no information.

To simplify the notation we will usually write S(r1...rn) for S(M [r1...rn]), Fλ(r1...rk) for
F (Mλ[r1...rk]) and so on.

14.2.2 Directional derivatives of symmetric polynomials

The functions we have defined are relevant to the discussion here for two reasons. First,
the elementary symmetric polynomial Sn(x) in N variables can be viewed as the forward
function F applied to the matrix M [x...x], where M has n identical rows equal to x. In our
notation,

Sn(x) = F{[n]}(x)

Second, it is possible to write a directional derivative (Sn)y1...yk
of Sn of any order as a combi-

nation of values of F on explicitly defined matrices M whose rows are either the indeterminate
x or the directions yi.

The basic observation here is the following lemma which is straightforward from the
definition of directional derivative.

Lemma 14.1. Let a polynomial P (x) in N variables be given by

P (x) = F(λ0...λk)(x, y1...yk)

Then
Pz(x) =

∑
A⊂λ0

F(A,λ0\A,λ1...λk)(x, z, y1...yk)

In words, when we take the derivative of such a polynomial in direction z, we replace some
of the rows which contained x with z.
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As a corollary we have a following expression for higher order derivatives of a symmetric
polynomial.

Proposition 14.1. Let k ≤ n, then

(Sn)y1...yk
(x) =

n−k∑
m=0

∑
`1...`k≥1,

∑
i `i=n−m

H
(
§(m), †(`∞)

∞ ...†(`‖)‖
)

Proof. Iterating Lemma 14.1,

(Sn)y1...yk
(x) =

∑
λ=(λ0,λ1...λk)

Fλ(x, y1...yk)

where the summation is over partitions λ such that λi are not empty for i = 1...k. Rear-
ranging, this is

n−k∑
m=0

∑
`1...`k≥1,

∑
i `i=n−m

∑
λ: |λ0|=m,|λ1|=`1...|λk|=`k

Fλ(x, y1...yk) =

n−k∑
m=0

∑
`1...`k≥1,

∑
i `i=n−m

H
(
§(m), †(`∞)

∞ ...†(`‖)‖
)

We can give explicit expressions for the coefficients of (Sn)y1...yk
(x). Fix m indices j1 <

j2 < ... < jm for 0 ≤ m ≤ n− k, and let a be the coefficient of xj1 · · · xjm in (Sn)y1...yk
.

Corollary 14.1. •

a =
∑

`1...`k≥1,
∑
i `i=n−m

H{|∞...|m}
(
†(`∞)
∞ ...†(`‖)‖

)

• If k +m+ p > n+ 1 then

a =
∑

`1...`k≥1,
∑
i `i=n−m

(
k∏
i=1

`i!

)−1

· S{j1...jm}
(
y

(`1)
1 ...y

(`k)
k

)
Here, for a subset of indices T ⊆ [N ], HT (M) returns the value of the matrix function H

applied to the n× (N −|T |) matrix obtained from M by deleting columns in T . The function
ST (M) is defined similarly.

Proof. The first claim is immediate from Proposition 14.1. The second claim follows from
the first claim, from (14.4), and from the simple observation that if k +m+ p > n+ 1 then
`i < p for i = 1...k in the above summation, which means `i! is invertible in Fp.
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Example 14.1. The following ”toy” example will be relevant for the case of the binary
field. It is sufficiently simple to illustrate what’s going on behind the cumbersome formulas.
Consider P = (S4)y,z. Then P is a quadratic polynomial and for 1 ≤ i < j ≤ N

coefx(i)x(j)(P ) =
∑

k 6=l, k,l 6∈{i,j}

y(k)z(l) = S{i,j} (y, z)

Continuing with the same example, note that it convenient to express the symmetric
function S (y, z) via inner products of vectors y, z,1, where 1 is the all-1 vector of length N .

S(y, z) =
∑
k 6=l

y(k)z(l) = 〈y,1〉 · 〈z,1〉 − 〈yz,1〉

Here we take yz to be the vector whose coordinates are point-wise inner products of the
coordinates of y and z, that is (yz)(i) = y(i)z(i). Of course, 〈yz,1〉 is the same as 〈y, z〉.

Similarly, we can express the ’incomplete’ symmetric function S{i,j}(y, z) via the complete
symmetric function S(y, z) minus forbidden terms, as follows

S{i,j}(y, z) = S(y, z)−
(
z(i) + z(j)

)
〈y,1〉 −

(
y(i) + y(j)

)
〈z,1〉+

(
y(i)z(j) + y(j)z(i)

)
Note the ”inclusion-exclusion” structure in the two expressions above. (To make it even
clearer we use ”+” and ”-” notation, though in the binary field both are, of course, the
same.) This structure becomes more evident as we pass to our next order of business, which
is expressing, for general n and k, the coefficients of (Sn)y1...yk

via inner products of vectors
y1...yk,1.

14.2.3 Inclusion-Exclusion formulas for symmetric functions

Some notation: Given m vectors y1...ym and a subset τ ⊆ [m], let yτ to be vector whose
coordinates are point-wise products of the corresponding coordinates of yi, i ∈ τ . Let S (y[τ ])
for the value of the function S on a matrix with |τ | rows yi, i ∈ τ . Let 〈yτ 〉 be the polynomial
〈yτ ,1〉 =

∑N
j=1

∏
i∈τ yi(j).

We start with an auxiliary lemma expressing the incomplete symmetric function
S{k} (r1...rn) as a polynomial in the k-th coordinate of the vectors ri and in complete sym-
metric functions applied to sub-matrices of M [r1...rn].

Lemma 14.2.

S{k} (r1...rn) =
∑
τ⊆[n]

(−1)|τ |(|τ |)! · rτ (k) · S
(
r
[
[n] \ τ

])
From now on we assume r∅ to be the all-1 vector, and S (r[∅]) to equal 1.

Proof. The proof is by induction on n. For n = 1 both sides equal
∑N

j=1 r1(j)− r1(k).
For n > 1, observe that

S{k} (r1...rn) = S (r1...rn)−
n∑
i=1

ri(k) · S{k}
(
r
[
[n] \ {i}

])
and the claim is easily verified using the induction hypothesis.
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Now we can state two main claims of this section. The first expresses the complete
symmetric function S (r1...rn) via inner products 〈rT 〉.

Proposition 14.2.

S (r1...rn) =
∑

λ={λ1...λm}

m∏
t=1

(
(−1)|λt|−1 (|λt| − 1)! · 〈rλt〉

)
In this summation λ = {λ1...λm} runs over all unordered partitions of [n] with non-empty
λi.

Proof. Again, the proof is by induction on n. For n = 1 both sides equal
∑N

j=1 r1(j). For
n > 1 we have

S(r1...rn) =
N∑
k=1

rn(k) · S{k}(r1...rn−1)

Using Lemma 14.2 and the induction hypothesis,

S(r1...rn) =
N∑
k=1

rn(k) ·
∑

τ⊆[n−1]

(−1)|τ |(|τ |)! · rτ (k) · S
(
r
[
[n− 1] \ τ

])
=

∑
τ⊆[n−1]

(−1)|τ |(|τ |)! ·
〈
rτ∪[n]

〉
· S
(
r
[
[n− 1] \ τ

])
Consider the summand corresponding to τ = [n − 1]. Recall the boundary assumption
S (r[∅]) = 1. Hence this summand is (−1)n−1(n − 1)! ·

〈
r[n]

〉
. This summand therefore

corresponds to the partition λ = {[n]} in the claim of the proposition.
For τ a proper subset of [n− 1], we use the induction hypothesis to obtain

S(r1...rn) =
∑

τ⊆[n−1]

(−1)|τ |(|τ |)! ·
〈
rτ∪[n]

〉
·
∑

θ={θ1...θl}

l∏
t=1

(
(−1)|θt|−1 (|θt| − 1)! · 〈rθt〉

)
+

(−1)n−1(n− 1)! ·
〈
r[n]

〉
Here θ runs over all the unordered partitions of [n − 1] \ τ with non-empty θi. Observe
that each pair (τ, θ) leads to a unique partition λ = {λ1...λl+1} = {θ1...θl, τ ∪ [n]} of [n].
Rearranging the terms, the last summation can be written as∑

λ=(λ1...λm)

m∏
t=1

(
(−1)|λt|−1 (|λt| − 1)! · 〈rλt〉

)
completing the proof of the proposition.

The second claim expresses the incomplete symmetric function S{j1...jk} (r1...rn) as a
polynomial in the missing coordinates j1...jk of the vectors ri and in complete symmetric
functions applied to sub-matrices of M [r1...rn]. Note that Lemma 14.2 is a special case k = 1
of this claim.
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Proposition 14.3.

S{j1...jk} (r1...rn) =
∑

τ=(τ1...τk)

k∏
t=1

(
(−1)|τt|(|τt|)! · rτt (jt)

)
· S
(
r
[
[n] \ ∪tτt

])
Here the summation is on all ordered set systems τ such that the terms τt are disjoint subsets
of [n]. The terms may also be empty.

Proof. The proof is by induction on k and n. The case k = 1 is treated in Lemma 14.2.
Consider the case n = 1. On one hand S{j1...jk} (r1) =

∑N
j=1 r1(j) −

∑k
t=1 r1 (jt). We

claim that this value can be also represented as

∑
τ=(τ1...τk)

k∏
t=1

(
(−1)|τt|(|τt|)! · rτt (jt)

)
· S
(
r
[
[1] \ ∪tτt

])
Here τi are disjoint subsets of [1]. Observe that there are k+ 1 summands in this expression,
corresponding to different set systems τ . Let τ (0) denote the set system with k empty terms,
and let τ (t), for t = 1...k denote the set system with τt = {1} and all the remaining terms
are empty. The summand corresponding to τ (0) is S (r1) =

∑N
j=1 r1(j). The summand

corresponding to τ (t) is (−r1 (jt)) · S (r∅) = −r1 (jt), and we are done in this case.
For k, n > 1, we have

S{j1...jk} (r1...rn) = S{j1...jk−1} (r1...rn)−
n∑
i=1

ri (jk) · S{j1...jk}
(
r
[
[n] \ {i}

])
By the induction hypothesis, this is

∑
θ=(θ1...θk−1)

k−1∏
t=1

(
(−1)|θt|(|θt|)! · rθt (jt)

)
· S
(
r
[
[n] \ ∪tθt

])
−

n∑
i=1

ri (jk) ·
∑

µ(i)=
(
µ

(i)
1 ...µ

(i)
k

)
k∏

u=1

(
(−1)|µ

(i)
u |(|µ(i)

u |)! · rµ(i)
u

(ju)
)
· S
(
r
[
[n] \ ∪tµ(i)

t \ {i}
])

Here the summation is on all ordered set systems θ such that the terms θt are disjoint subsets
of [n] and on ordered set systems µ(i), i = 1...n such that the terms µ

(i)
u are disjoint subsets

of [n] \ {i}.
Given a set system θ = (θ1...θk−1) we define a set system τ = (τ1...τk) by setting τt = θt,

t = 1...k − 1 and τk = ∅. Given a set system µ(i) =
(
µ

(i)
1 ...µ

(i)
k

)
we define a set system

τ = (T1...τk) by setting τu = µ
(i)
u , u = 1...k − 1 and τk = µ

(i)
k ∪ {i}. In both cases we have

obtained a set system of the type we want, that is an ordered family of k disjoint subsets of
[n]. Moreover, each such system with empty k-th term is obtained exactly once, from the
corresponding θ-system, and each system with non-empty k-th term τk is obtained exactly

242



www.manaraa.com

|τk| times, from systems µ(i) with i ∈ τk. Rearranging the terms and the signs, the last
expression is precisely∑

τ=(τ1...τk)

k∏
t=1

(
(−1)|τt|(|τt|)! · rτt (jt)

)
· S
(
r
[
[n] \ ∪tτt

])
,

completing the proof.

14.2.4 Some properties of Gowers’ norms

The main result in this subsection shows that if a function from FN to F is fixed on a subset
of FN defined by low-degree polynomial constraints, then it has a non-trivial Gowers norm
of an appropriate order.

Recall that for a vector x ∈ FN , xi stands for a vector in FN whose coordinates are i-th
powers of the coordinates of x.

Proposition 14.4. Let K be an absolute constant. Let yi,j, i = 1...p − 1, j = 1...K, be
K(p− 1) vectors in FN . Let M be a subset of FN defined by the constraints 〈xi, yi,j〉 = 0 for
all i, j.

Let f be a function from FN to F. Assume that f is fixed on M . Then

‖f‖Up >
(
|M |
2N

)2

=: Pr2{M}

Proof. Let f|M ≡ c0.
Consider a subspace V of polynomials of degree at most p − 1 in F[x1...xN ] spanned

by the polynomials 〈xi, yi,j〉, for all i, j. We will first find a polynomial g ∈ V such that
| 〈f, g〉 | ≥ Pr{M}. This, combined with a lemma from [GT08], will imply the claim of the
proposition.

Let b = (bi,j), i = 1...p− 1, j = 1...K, be a matrix with entries in F. Let c ∈ F. Set

µ(b, c) = Pr
{
x : f(x) = c ∧

〈
xi, yi,j

〉
= bi,j for all i, j

}
Note that, by assumption, for a zero matrix b holds µ (b, c0) = Pr{M}. In other words,
µ(b, c) = 0 and for b = 0 any c 6= c0.

Now, for any g(x) =
∑

i,j ai,j 〈xi, yi,j〉 in V holds

〈f, g〉 = Ee(f − g) =
∑
b,c

µ(b, c) · e (c− 〈a,b〉)

where a = (ai,j)i,j and 〈a,b〉 =
∑

i,j ai,jbi,j. Averaging over V , we have

Eg∈V 〈f, g〉 =
1

|V |
∑
a

∑
b,c

µ(b, c) · e (c− 〈a,b〉) =
1

|V |
∑
b,c

µ(b, c) · e(c)
∑
a

e (−〈a,b〉) =

∑
c

µ(0, c) · e(c) = µ (0, c0) · e (c0) = Pr{M} · e (c0)

This means, there is g ∈ V with | 〈f, g〉 | ≥ Pr{M}. We conclude the proof of the proposition
by quoting a lemma from [GT08], which states that | 〈f, g〉 | ≥ ε implies ‖f‖Up ≥ ε.

243



www.manaraa.com

14.2.5 Asymptotic uniformity and independence of some random
variables

In this subsection we deal with another property of multiviarite polynomials. Let n be fixed
integer and let N be an integer parameter growing to infinity. Let r1...rn be n vectors in
FN . Let κ = (k1...kn) be a non-zero sequence of integers 0 ≤ ki < p. For each such sequence
define a polynomial Xκ (r1, ..., rn) =

∑N
j=1

∏n
i=1 r

ki
i (j).

Now,let r1...rn be chosen uniformly and independently from FN . We claim that for a large
N the random variables Xκ (r1, ..., rn) are nearly independent and uniformly distributed over
F. Let X = (Xκ)κ, and let K = pn.

Proposition 14.5. Let U be the uniform distribution on FK. Let P be distribution of X on
FK. Let ‖ · ‖ denote the statistical (l1) distance between distributions.

Then there is a constant c > 0 depending on n, p but not on N such that

‖P − U‖ ≤ exp {−cN}

Proof. We start from a simple observation that Fourier transform of a uniform distribution
is the delta function at 0. In addition, the two following statements are equivalent up
to constants: ’a distribution is exponentially close to uniform’ and ’all non-zero Fourier
coefficients of the distribution are exponentially close to zero’. Accordingly, we will show
that all the non-zero Fourier coefficients of P tend exponentially fast in N to zero.

Consider a character χ(y) = ξ〈y,a〉, corresponding to a non-zero vector a = (aκ)κ ∈ FK .
(Recall that ξ = e2πi/p is the p-th primitive root of unity.) Then, normalizing appropriately,

P̂ (χ) =
∑
y

P (y)χ̄(y) =
∑
y

Pr{X = y} · ξ−
∑
κ aκyκ = Eξ−

∑
κ aκXκ

Let Pa denote the distribution of the random variable Xa =
∑

κ aκXκ. Then we have shown

P̂ (χ) = P̂a(1). We will show the non-zero Fourier coefficients of Pa to be exponentially small,
completing the proof of the proposition.

We have

Xa (r1, ..., rn) =
∑
κ

aκPκ (r1, ..., rn) =
N∑
j=1

∑
κ=(k1...kn)

aκ

n∏
i=1

rkii (j)

Let xi be elements of the field F. Consider an n-variate polynomial

Q(x1...xn) =
∑

κ=(k1...kn)

aκ

n∏
i=1

xkii

Since not all of the coefficients aκ are zero, and since all κ are non-zero sequences, Q is a
multi-variate polynomial of degree at least 1 in F[x1...xn], and therefore attains at least two
values with probability bounded away from zero. Now, Xa =

∑N
j=1Q (r1(j)...rn(j)) is a sum

of N independent copies of Q. Let µ denote the distribution of Q on F. Then the distribution
Pa of Xa is µ∗N , the N -wise convolution of µ with itself. Since p is prime, µ̂(0) = 1, and

|µ̂| < 1 everywhere else. Therefore, P̂a = (µ̂)N tends to the delta function at 0 exponentially
fast in N , completing the proof.
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14.2.6 Estimates on the number of common zeroes of some fami-
lies of polynomials

The main claim of this subsection is the following proposition.

Proposition 14.6. Let M be the ring of F-valued functions on FN , that is M = F[x1...xN ]/I,
where I is the ideal (xp1 − x, ..., x

p
N − x). Let f1...fK be polynomials in M . Let S be the set

of common zeroes of f1...fK, that is

S =
{
u ∈ FN : f1(u) = ... = fK(u) = 0

}
Then

|S| ≤ dim (M/J)

where J is the ideal generated by {fi}, and dim (M/J) denotes the dimension of dim (M/J),
viewed as a vector space over F.

Proof. For each u ∈ S, let qu ∈ M be defined by qu(u) = 1 and qu(v) = 0 for all v 6= u. We
will show that the family {qu+J}u∈S is linearly independent in M/J . This will immediately
imply the claim of the proposition.

Consider a linear combination q =
∑

u∈S λuqu such that q ∈ J . Let v ∈ S. We compute
q(u) in two ways. First, since q ∈ J , we have q(v) = 0. On the other hand, q(v) =∑

u∈S λuqu(v) = λv. This shows λv = 0 for all v ∈ S, completing the proof.

In some cases, the dimension of M/J is easy to estimate.

Lemma 14.3. Let p = 2, let K =
(
N
k

)
, and let {fI} be indexed by k-subsets I of [N ].

Assume that for any such subset I holds

deg

(
fI(x)−

∏
i∈I

xi

)
≤ k − 1 (14.5)

Then,

dim (M/J) ≤
k−1∑
j=0

(
N

j

)
Proof. We will construct a generating subset of the vector space M/J of cardinality at most∑k−1

j=0

(
N
j

)
. We start from a trivial generating set {m + J}, where m runs through all the

2N multi-linear monomials in N variables. Now, in the factor space M/J , we can replace
any product of k variables,

∏
i∈I xi, by a polynomial of degree smaller than k. Iterating this

procedure, we arrive to a generating set spanned by {s + J}, where s now runs through∑k−1
j=0

(
N
j

)
monomials of degree at most k − 1.
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14.3 Proof of Theorem 14.1

We need to show that
‖S2p‖Up+2 > ε

for an absolute constant ε.
We remark that (14.2) can be shown exactly in the same way, replacing 2p with n and

p+ 2 with n− p+ 2 throughout.

Recall ([GT08]) that ‖f‖Up+2 = E1/2p+2

y,z ‖fy,z‖2p

Up . Since the Gowers’ norms are nonneg-
ative, it will suffice to show that ‖fy,z‖Up is non-negligible for a non-negligible fraction of
directions y, z.

Let
A =

{
(y, z) :

〈
ya, zb

〉
= 0 for all 0 ≤ a, b < p

}
By Proposition 14.5, for uniformly and independently chosen directions y, z, and for a suffi-
ciently large N , the probability of A is very close to p−p

2
. Therefore, A is a non-negligible

event. We will now show that for any (y, z) ∈ A holds ‖fy,z‖Up > ε′(y, z), for an appropriate
function ε′.

Fix (y, z) in A. Let f = (S2p)y,z. Let

M = M(y, z) =
{
x :

〈
xi, yazb

〉
= 0 for all 1 ≤ i ≤ p− 1, 0 ≤ a, b < p

}
We will show that f is fixed on M . Assuming this, by Proposition 14.4, we have ‖fy,z‖Up >
Pr2{M}, and therefore

‖f‖2p+2

Up+2 = Ey,z‖fy,z‖2p

Up ≥ Pr{A} · E(y,z)∈APr
2p+1{M(y, z)} ≥

Pr{A} · E2p+1

(y,z)∈APr{M(y, z)} ≥
(
Pr{A} · E(y,z)∈APr{M(y, z)}

)2p+1

=

Pr2p+1
{
x :

〈
xiyazb

〉
= 0 for all 0 ≤ a, b, i ≤ p− 1

}
≥ Ω

(
p−p

3·2p+1
)

The last inequality follows from Proposition 14.5, since random variables
〈
xiyazb

〉
are asymp-

totically uniform and independent.
It remains to prove the following fact.

Lemma 14.4. Let x, y, z be three vectors in FN satisfying
〈
xiyazb

〉
= 0 for all 0 ≤ a, b, i ≤

p− 1. Then

(S2p)y,z (x) = H
(
†

(√)
, ‡

(√)
)

Proof. By Proposition 14.1,

(S2p)y,z (x) =

2p−2∑
m=0

∑
a,b≥1, a+b=2p−m

H
(
§(m), †(a), ‡(b)

)
We claim that all of the summands on the right, except (possibly) H

(
†

(√)
, ‡

(√)
)

are 0.
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There are two possible cases to consider. The easier case is when a, b,m < p. In such a
case, by (14.4), H

(
§(m), †(a), ‡(b)

)
is proportional to S

(
x(m), y(a), z(b)

)
. By Proposition 14.2,

the symmetric function S
(
x(m), y(a), z(b)

)
is a polynomial in

〈
xiyazb

〉
, which vanishes when

all of these inner products are 0.
In the second case, one of the indices a, b,m is at least p. Note, that there could be at

most one such index (barring the case a = b = p). We may assume this index is m. We claim
that in this case H

(
§(m), †(a), ‡(b)

)
can be written as a linear combination of hybrid functions

H
(
§(`),∇∞, ...,∇m−`

)
, where ` < m and the vectors ri are of the form xαyβzγ. Note that

this will suffice to prove the lemma, since iterating this step will express H
(
§(m), †(a), ‡(b)

)
as

a linear combination of symmetric functions in ri, and these functions vanish.
ConsiderH

(
§(m), †(a), ‡(b)

)
. For notational convenience, let w1...wa+b stand for the vectors

y...y, z...z (y taken a times and z taken b times). Note that both a and b are smaller than p.
Using Corollary 14.1 and Proposition 14.3,

H
(
§(m), †(a), ‡(b)

)
= (a! · b!)−∞ ·

∑
〉∞<〉∈<...<〉m

§〉∞§〉∈ · · · §〉mS
{〉∞...〉m}

(
†(a), ‡(b)

)
=

(a! · b!)−1·
∑

i1<i2<...<im

xi1xi2 · · ·xim ·
∑

τ=(τ1...τm)

m∏
t=1

(
(−1)|τt|(|τt|)! · wτt (it)

)
·S
(
w
[
[a+ b] \ ∪tτt

])
Here the inner summation is on all ordered set systems τ such that the terms τt are disjoint
subsets of [a+ b]. The terms may also be empty.

Let us attempt to simplify the double summation we obtained. First, we may disregard
the constant term (a! · b!)−1. Next, observe that, as before, all symmetric functions of the
form S (w[T ]) vanish, unless T is empty, in which case they equal 1. Therefore, we may
consider the double summation∑

i1<i2<...<im

xi1xi2 · · ·xim ·
∑

τ=(τ1...τm)

m∏
t=1

(
(−1)|τt|(|τt|)! · wτt (it)

)
Here the inner summation is on all ordered partitions τ of [a+ b]. The terms τt may also be
empty. Changing the order of summation, and ignoring the constant term (−1)a+b, we get∑
τ=(τ1...τm)

m∏
t=1

(|τt|)!·
∑

i1<i2<...<im

m∏
t=1

(x · wτt) (it) =
∑

τ=(τ1...τm)

(
m∏
t=1

(|τt|)!

)
·F (xwτ1 , xwτ2 , ..., xwτm)

Consider the last expression. Let us use some more notation. For an ordered partition
τ = (τ1...τm), let n = n(τ) be the number of empty terms. Let {τ1...τm} denote the unordered
version of this partition, where the first n(τ) terms are taken, by agreement, to be the empty
ones. Then we can rewrite this expression as∑

τ={τ1...τm}

(
m∏
t=1

(|τt|)!

)
· H
(
§(\), §wτ\+∞ , ..., §wτm

)
Now, clearly not all the terms in the partition are empty and, therefore, n(τ) < m for all τ ,
completing the proof of our last claim, of the lemma, and of the theorem.
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14.4 Proof of Theorem 14.2

Let p = 2. We will show there is an absolute constant α > 0 such that for any polynomial g
of degree at most 3 in N variables holds

〈S4, g〉 < exp{−αN}

A first step is to observe that there is a relation between the inner product of two functions
and the average inner product of their derivatives.

Lemma 14.5. For any two functions f and g holds

〈f, g〉4 ≤ Ey 〈fy, gy〉2

Proof. This is an immediate corollary of a lemma in [Sam07], but we give the elementary
proof for completeness. By the Cauchy-Schwarz inequality,

Ey 〈fy, gy〉2 ≥ E2
y 〈fy, gy〉 = E2

x,y(−1)f(x)+f(x+y)+g(x)+g(x+y) = E4(−1)f(x)+g(x) = 〈f, g〉4

Corollary 14.2.
〈f, g〉8 ≤ Ey,z 〈fy,z, gy,z〉2

We will show that for any polynomial g of degree at most 3 holds Ey,z
〈

(S4)y,z , gy,z

〉2

≤
exp{−αN}. First, here is a brief overview of the argument.

The point is that taking second derivatives makes life easier, since a second derivative of
g is a linear function, and a second derivative of S4 is a quadratic. We therefore need to show
that for the large majority of directions y, z, the quadratic function (S4)y,z has a small inner
product with the linear function (−1)gy,z . In this we will be helped by a theorem of Dixon
giving a structural description of quadratic polynomials, which, in particular, characterizes
the Fourier transform of functions of the type (−1)Q, where Q is a quadratic. In fact, setting
Q = (S4)y,z we will see that for many of the directions y, z the Fourier coefficients of (−1)Q

will be exponentially small. For the remaining directions, these Fourier coefficients will be
supported on an explicit easy to describe 3-dimensional affine subspace depending on y, z.
We will then argue that for any fixed polynomial g of lower degree, the support of the
character (−1)gy,z lies in this affine subspace with exponentially small probability over y, z.

We proceed with computing the second derivative Q = (S4)y,z.

14.4.1 Second derivatives of S4

Write Q(x) =
∑

i<j qi,jx(i)x(j) +
∑

i `ix(i) + c.
By Proposition 14.1 or by Example 14.1.

qi,j = S(y, z)− 〈y,1〉 ·
(
z(i) + z(j)

)
+ 〈z,1〉 ·

(
y(i) + y(j)

)
+
(
y(i)z(j) + y(j)z(i)

)
At this point we invoke (a corollary of) a theorem of Dixon [MS83]:
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Theorem 14.3. Let Q(x) =
∑

i<j qi,jx(i)x(j) +
∑

i `ix(i) + c be a quadratic polynomial over
F2. Consider the symmetric matrix with zeros on the diagonal and off-diagonal entries given
by Si,j = Sj,i = qi,j. Let the rank of B = 2h (it is always even). Then the function (−1)Q

has 22h non-zero Fourier coefficients of absolute value 2−h. Moreover, all these coefficients
lie in an 2h-dimensional affine subspace of Fn2 .

Consider the matrix B in our case. Some notation: let J be the matrix with 0 on the
diagonal and 1 off the diagonal. Let u⊗ v denote the outer product uvt. Then,

B = S(y, z) · J + 〈y,1〉 ·
(
z ⊗ 1 + 1⊗ z

)
+ 〈z,1〉 ·

(
y ⊗ 1 + 1⊗ y

)
+
(
y ⊗ z + z ⊗ y

)
Since the rank of J is at least N − 1 and the rank of the remaining matrices is at most 2,
the matrix B is almost of full rank if S(y, z) = 1. In this case, by Theorem 14.3, the Fourier
coefficients of (−1)Q are exponentially small.

We therefore may assume S(y, z) = 0. In this case the quadratic part of Q may be
written as∑

i<j

qi,jx(i)x(j) = 〈y,1〉 · 〈x,1〉 〈x, z〉+ 〈z,1〉 · 〈x,1〉 〈x, y〉+
(
〈x, y〉 〈x, z〉+ 〈x, yz〉

)
Recall that yz denotes the pointwise product of vectors y and z.

This implies the non-zero Fourier coefficients of
∑

i<j qi,jx(i)x(j) lie in a 3-dimensional
affine subspace of Fn2 . The linear part of this subspace is spanned by the vectors y, z,1 and
it is shifted by a vector yz.

Next, consider the linear part
∑

i `(i)x(i) of Q. By Proposition 14.1,

`(i) = H{〉}
(
†(∈), ‡

)
+H{〉}

(
†, ‡(∈)

)
=∑

j<k<l 6=i

(
y(k)y(l)z(j)+y(j)y(l)z(k)+y(j)y(k)z(l)

)
+
(
y(j)z(k)z(l)+y(k)z(j)z(l)+y(l)z(j)z(k)

)
This can be directly verified to be equal to(

S(y, z) + S(z, z) + 〈z,1〉
)
· y(i) +

(
S(y, z) + S(y, y) + 〈y,1〉

)
· z(i)+(

S(y, y) · 〈z,1〉+ S(z, z) · 〈y,1〉+ 〈y, z〉 · 〈y + z,1〉
)

By assumption, S(y, z) = 〈y,1〉 · 〈z,1〉 + 〈y, z〉 = 0. Note that this also implies 〈y, z〉 ·
〈y + z,1〉 = 0, implying

`(i) =
(
S(z, z) + 〈z,1〉

)
· y(i) +

(
(S(y, y) + 〈y,1〉

)
· z(i) +

(
S(y, y) · 〈z,1〉+S(z, z) · 〈y,1〉

)
Consequently, the linear part of Q may be written as∑

i

`(i)x(i) =

(
S(z, z)+〈z,1〉

)
·〈x, y〉+

(
(S(y, y)+〈y,1〉

)
·〈x, z〉+

(
S(y, y) ·〈z,1〉+S(z, z) ·〈y,1〉

)
·〈x,1〉

This means that the non-zero Fourier coefficients of the polynomial Q =
∑

i<j qi,jx(i)x(j) +∑
i `(i)x(i) + c lie in the affine subspace AFy,z = yz + Span (y, z,1).
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14.4.2 Second derivatives of a fixed polynomial of degree 3

Let
g(x) =

∑
i<j<k

ai,j,kx(i)x(j)x(k)

be a polynomial of degree 3. For directions y, z ∈ FN , consider the second derivative gy,z =∑
i vy,z(i)x(i) + cy,z. We need to show that the probability of the vector vy,z falling in the

affine space AFy,z = yz + Span (y, z,1) is exponentially small.
First, some notation. For 1 ≤ i ≤ N , let Gi be a symmetric N ×N matrix over F with

(Gi)j,k = (Gi)k,j = ai,j,k for all j 6= k. (Here we think about {i, j, k} as an unordered subset
of [N ].) The diagonal entries of Gi are set to 0. For future use note the important property
(Gi)j,k = (Gj)i,k = (Gk)i,j.

These matrices are relevant because they describe the vector vy,z.

Lemma 14.6. •
vy,z(i) = coefx(i) (gy,z(x)) = 〈y,Giz〉

• An alternative representation of vy,z will be more convenient for us. For z ∈ FN , let

G(z) =
∑N

i=1 z(i)Gi. Then
vy,z = G(z) · y

Proof. For the first claim of the lemma, by linearity of the derivative, it suffices to consider
the monomial g(x) = x(i)x(j)x(k). This case can be easily verified directly.

For the second claim, note that

(G(z)·y)(l) =
N∑
k=1

(G(z))k,l y(k) =
N∑
k=1

y(k)·
N∑
i=1

z(i) (Gi)k,l =
N∑
k=1

y(k)·
N∑
i=1

(Gl)k,i z(i) = 〈y,Glz〉

Consider the event {vy,z ∈ AFy,z}. This means vy,z = yz + uy,z, for some vector uy,z ∈
Span(y, z,1). There are only 8 possible choices for uy,z. For convenience, let us assume,
without loss of generality (as can be easily seen from the proof), that uy,z = y+ z + 1 is the
most popular one. By the lemma, the event {vy,z = yz + uy,z} is the same as {G(z) · y =
yz + uy,z}. To simplify things some more, let Ai = Gi + ei ⊗ ei, i = 1...N . That is, Ai = Gi

but for (Ai)i,i = 1. Let A(z) =
∑N

i=1 z(i)Ai. Note that A(z) · y = G(z) · y + yz. Hence
{G(z) · y = yz + uy,z} is the same as {A(z) · y = uy,z = y + z + 1}

We conclude the proof by a technical claim.

Proposition 14.7. Let {Ai}, i = 1...N be a family of symmetric N × N matrices over F
with Ai(k, k) = δik. Then, for y, z uniformly at random and independently from FN ,

Pry,z

{
(A(z)) · y = y + z + 1

}
≤
(

3

4

)N
The proof of the proposition is based on the claim that the rank of a matrix A(z) is

typically large.
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Lemma 14.7. Let matrices {Ai} be as in the proposition. Let C be any fixed symmetric
N ×N matrix. Then

Prz

{
rank(A(z) + C) ≤ k − 1

}
≤ 1

2N
·
k−1∑
i=0

(
N

i

)
.

Proof. Consider a family of
(
N
k

)
polynomials fI on FN . These polynomials are indexed by

k-subsets of [N ]. For a k-subset I, let fI(z) be the determinant of the I×I minor of A(z)+C.
Clearly, rank of A(z) + C is smaller than k if and only if z is a joint zero of {fI}.

We now claim that the coefficient of
∏

i∈I zi in fI(z) is 1. If this is true, deg(fI−
∏

i∈I zi) ≤
k − 1, and the claim of the lemma will follow from Lemma 14.7.

Let B(z) = A(z) +C. Since we are working in characteristic two, the symmetry of B(z)
implies that

detB(z) =
∑

σ∈SN : σ=σ−1

N∏
i=1

Biσ(i)(z) =

∑
σ∈SN : σ=σ−1

∏
{i:σ(i)=i}

(zi + Ci,i) ·
∏

{i:i<σ(i)}

Biσ(i)(z) =
n∏
i∈I

zi + lower order terms.

In the second equality we use the identity B2
iσ(i)(z) = Biσ(i)(z) in F.

Let I denote the identity N ×N matrix.

Let p(z) = Pry

{
A(z) · y = y + z + 1

}
. Clearly p(z) ≤ 2−rank(A(z)+I). By Lemma 14.7,

Pry,z

{
(A(z)) · y = y + z + 1

}
= Ezpz ≤ Ez2−rank(A(z)+I) ≤ 1

2N

N∑
k=0

(
N

k

)
2−k =

(
3

4

)N
This concludes the proof of the proposition, and of Theorem 14.2.
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Chapter 15

Lower bound for adaptive linearity
tests

Linearity tests are randomized algorithms which have oracle access to the truth table of some
function f, and are supposed to distinguish between linear functions and functions which
are far from linear. Linearity tests were first introduced by Blum, Luby and Rubenfeld
[BLR93], and were later used in the PCP theorem, among other applications. The quality of
a linearity test is described by its correctness c - the probability it accepts linear functions,
its soundness s - the probability it accepts functions far from linear, and its query complexity
q - the number of queries it makes.

Linearity tests were studied in order to decrease the soundness of linearity tests,
while keeping the query complexity small (for one reason, to improve PCP constructions).
Samorodnitsky and Trevisan [ST00] constructed the Complete Graph Test, and prove that
no Hyper Graph Test can perform better than the Complete Graph Test. Later [ST06] they
prove, among other results, that no non-adaptive linearity test can perform better than the
Complete Graph Test. Their proof uses the algebraic machinery of the Gowers Norm. A
result by Ben-Sasson, Harsha and Raskhodnikova [BSHR05] allows to generalize this lower
bound also to adaptive linearity tests.

We also prove the same optimal lower bound for adaptive linearity test, but our proof
technique is arguably simpler and more direct than the one used in [ST06]. We also study,
like [ST06], the behavior of linearity tests on quadratic functions. However, instead of
analyzing the Gowers Norm of certain functions, we provide a more direct combinatorial
proof, studying the behavior of linearity tests on random quadratic functions. This proof
technique also lets us prove directly the lower bound also for adaptive linearity tests.

15.1 Introduction

We study the relation between the number of queries and soundness of adaptive linearity
tests. A linearity test (over the field F2 for example) is a randomized algorithm which has
oracle access to the truth table of a function f : {0, 1}n → {0, 1}, and needs to distinguish
between the following two extreme cases:
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1. f is linear

2. f is far from linear functions

A function f is called linear if it can be written as f(x1, ..., xn) = a1x1 + ... + anxn,
with a1, ..., an ∈ F2. The agreement of two functions f, g : {0, 1}n → {0, 1} is defined as
d(f, g) = |Px[f(x) = g(x)] − Px[f(x) 6= g(x)]|. f is far from linear functions if it has small
agreement with all linear functions (we make this definition precise in Section 15.2).

Linearity tests were first introduced by Blum, Luby and Rubenfeld in [BLR93]. They
presented the following test (coined the BLR test), which makes only 3 queries to f :

1. Choose x,y ∈ {0, 1}n at random

2. Verify that f(x + y) = f(x) + f(y).

Bellare et al. [BCH+95] gave a tight analysis of the BLR test. It is obvious that the BLR
test always accepts a linear function. They have shown that if the test accepts a function f
with probability 1/2 + ε, then f has agreement at least 2ε with some linear function.

For a linearity test, we define that it has completeness c if it accepts any linear function
with probability of at least c. A test has perfect completeness if c = 1. A linearity test has
soundness s if it accepts any function f with agreement at most ε with all linear functions,
with probability of at most s+ ε′, where ε′ → 0 when ε→ 0. We define the query complexity
q of a test as the maximal number of queries it performs. In the case of the BLR test, it has
perfect completeness, soundness s = 1/2 (with ε′ = 2ε) and query complexity q = 3.

If one repeats a linearity test with query complexity q and soundness s independently t
times, the query complexity grows to q′ = qt while the soundness reduces to s′ = st. So,
it makes sense to define the amortized query complexity q̄ of a test as q̄ = q/ log2 (1/s).
Independent repetition of a test doesn’t change it’s amortized query complexity. Notice that
the BLR test has amortized query complexity q̄ = 3.

Linearity tests are a key ingredient in the PCP theorem, started in the works of Arora
and Safra [AS98] and Arora, Lund, Motwani, Sudan and Szegedy [ALM+98]. In order to
improve PCP constructions, linearity tests were studied in order to improve their amortized
query complexity.

Samorodnitsky and Trevisan [ST00] have generalized the basic BLR linearity test. They
introduced the Complete Graph Test. The Complete Graph Test (on k vertices) is:

1. Choose x1, ...,xk ∈ {0, 1}n independently

2. Verify f(xi + xj) = f(xi) + f(xj) for all i, j

This test has perfect completeness and query complexity q =
(
k
2

)
+ k. They show that all

the
(
k
2

)
tests that the Complete Graph Test performs are essentially independent, i.e. that

the test has soundness s = 2−(k2). This makes this test have amortized query complexity
q̄ = 1 + θ(1/

√
q). They show that this test is optimal among the family of Hyper-Graph

Tests (see [ST00] for definition of this family of linearity tests), and raise the question of
whether the Complete Graph Test is optimal among all linearity tests, i.e. does a test with
the same query complexity but with better soundness exist?
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They partially answer this question in [ST06], where (among many other results) they
show that no non-adaptive linearity test can perform better than the Complete Graph Test.
A test is called non-adaptive if it first chooses q locations in the truth table of f , then queries
them, and based on the results accept or rejects f . Otherwise, a test is called adaptive. An
adaptive test may decide on its query locations based on the values of f in previous queries.

The proof technique of [ST06] uses the algebraic analysis of the Gowers Norm of certain
functions. The Gowers Norm is a measure of local closeness of a function to a low degree
polynomial. For more details regarding the definition and properties of the Gowers Norm,
see [GT08] and [Sam07].

Ben-Sasson, Harsha and Raskhodnikova prove in [BSHR05] that any adaptive linearity
test with completeness c, soundness s and query complexity q can be transformed into a non-
adaptive linearity test with the same query complexity, perfect completeness and soundness
s′ = s+ 1− c. Combining their result with the result of [ST06] proves the lower bound also
for adaptive linearity tests.

We also prove the same optimal lower bound for adaptive linearity test, but our proof
technique is arguably simpler and more direct than the one used in [ST06]. We also study,
like [ST06], the behavior of linearity tests on quadratic functions. However, instead of
employing algebraic analysis of the Gowers Norm of certain functions, we provide a more
direct combinatorial proof, studying the behavior of linearity tests on random quadratic
functions. This proof technique also lets us prove directly the lower bound also for adaptive
linearity tests.

15.1.1 Our techniques

We model adaptive tests using test trees. A test tree T is a binary tree, where in each inner
vertex v there is some label x(v) ∈ {0, 1}n, and the leaves are labeled with either accept or
reject. Running a test tree on a function f is done by querying at each stage f on the label
of the current vertex (starting at the root), and following one of the two edges leaving the
vertex, depending on the query response. When reaching a leaf, its label (accept or reject) is
the value of that f gets in T . An adaptive test T can always be modeled as first randomly
choosing a test tree from some set {Ti}, according to some distribution on the test trees,
then running the test tree on f .

It turns out that in order to prove a lower bound which matches the upper bound of the
Complete Graph Test, it is enough to consider functions f which are quadratic. Actually,
it’s enough to consider f which is a random quadratic function.

A function f is quadratic if it can be presented as f(x1, ..., xn) =
∑
i,j

ai,jxixj +
∑
i

bixi+c

for some values ai,j, bi, c ∈ F2. We study the behavior of running test trees on a random
linear function, and on a random quadratic function.

The main idea is as follows. Let v be some inner vertex in a test tree T , with the path
from the root of T to v being v0, ..., vk−1, v. If x(v) is linearly dependent on x(v0), ...,x(vk−1),
then when running T on any linear function, the value of f(x(v)) can be deduced from the
already known values of f(x(v0)), ..., f(x(vk−1)). Therefore, if the vertex v is reached, then
the same edge leaving v will always be taken by any linear function. Additionally, if x(v) is
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linearly independent of x(v0), ...,x(vk−1), then either v is never reached running T on linear
functions, or the two edges leaving v are taken with equal probability when running T on
a random linear function. A similar analysis can be made when running T on quadratic
functions, replacing linear dependence with a corresponding notion of quadratic dependence.

Using this observation, we can define the linear rank of a leaf v, marked l(v), as the linear
rank of labels on the path from the root to v. We prove that running the test tree T on a
random linear function reaches v with probability 2−l(v). Similarly, we define the quadratic
rank of a leaf v, marked q(v), as the quadratic rank of those labels, and we proving that
running T on a random quadratic function reaches v with probability 2−q(v). We prove that
the quadratic rank of any set cannot be much larger than its linear rank, and in particular
that q(v) ≤

(
l(v)
2

)
+ l(v) for all leaves v. We use this inequality to prove that a test which

has completeness c and query complexity q accepts a random quadratic function with a
probability of at least c − 1 + 2−q+φ(q), where φ(q) is defined as the unique non-negative
solution to

(
φ(q)

2

)
+ φ(q) = q.

We use this to show that any linearity test with completeness c and query complexity q
must have s ≥ 2−q+φ(q). In particular, the Complete Graph Test on k vertices has perfect

completeness, soundness s = 2−(k2) and query complexity q =
(
k
2

)
+ k. Since φ(q) = k the

Complete Graph Test is optimal among all adaptive tests with the same query complexity.
In fact, we prove a stronger claim. We say that a test T has average query complexity q if

for any function f , the average number of queries performed is at most q. In particular any
test with query complexity q also has average query complexity q. We prove that for any test
with completeness c and average query complexity q, the soundness is at least s ≥ 2−q+φ(q).

We present and analyze linearity tests over F2. Linearity tests can also be considered
over larger fields or groups. Our lower bound actually generalizes easily to any finite field,
but for ease of presentation, and since the techniques are exactly the same, we present
everything over F2. We comment further on the modifications required for general finite
fields in Section 15.2.

15.2 Preliminaries

15.2.1 Linearity tests

We call a function f : {0, 1}n → {0, 1} linear if it can be written as f(x1, ..., xn) = a1x1 +
...+ anxn for some a1, ..., an ∈ {0, 1} where addition and multiplication are in F2.

A linearity test is a randomized algorithm with oracle access to the truth table of f ,
which is supposed to distinguish the following two extreme cases:

1. f is linear (accept)

2. f is ε-far from linear functions (reject)

where the agreement of two functions f, g : {0, 1} → {0, 1} is defined as d(f, g) =
|Prx[f(x) = g(x)] − Prx[f(x) 6= g(x)]|, and f is ε-far from linear functions if the agree-
ment it has with any linear function is at most ε.
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We now follow with some standard definition regarding linearity tests (or more generally,
property tests). We say a test has completeness c if for any linear function f the test accepts
with probability at least c. A test has perfect completeness if c = 1. We say a test has
soundness s if for any f which is ε-far from linear the test accepts with probability at most
s+ε′, where ε′ → 0 when ε→ 0 (in fact, we talk about a family of linearity tests, for n→∞,
but we ignore this subtle point).

A test is said to have query complexity q if it accesses the truth-table of f at most q times
(for any choice of it’s internal randomness). A test is said to have average query complexity
q if for any function f , the average number of accesses (over the internal randomness of the
test) done to the truth table of f is at most q. Obviously, any test with query complexity q
is also a test with average query complexity q.

We say a test is non-adaptive if it chooses all the locations it’s going to query in the truth
table of f before reading any of their values. Otherwise, we call the test adaptive.

We now turn to model adaptive tests in a way that will be more convenient for our
analysis. We first define a test tree and running a test tree on a function.

Definition 15.1. A test tree on functions {0, 1}n → {0, 1} is a rooted binary tree T . On
each inner vertex of the tree v there is a label x(v) ∈ {0, 1}n. On each leaf there is a label of
either accept or reject.

Definition 15.2. Running a test tree T on a function f is done as follows. We start at the
root of the tree v0, read the value of f(x(v0)), and according to the value take the left or the
right edge leaving v0. We continue in this fashion on inner vertices of T until we reach a
leaf of T . The value of f in T is the value of the end leaf (i.e. accept or reject), and the
depth of f in T is the depth of the end vertex of f in T .

Using these definitions, we can now model adaptive tests. We identify an adaptive test
T on functions {0, 1}n → {0, 1} with a distribution of binary trees {Ti} (also on functions
{0, 1}n → {0, 1}). Running the test T on a function f is done by randomly choosing one of
the trees Ti (according to their distribution), and then running the test tree Ti on f . The
result of the function f in the test tree Ti is the result the test T returns on f .

Notice that a test has query complexity q iff all trees Ti has depth at most q, and has
average query complexity q iff for any function f , the average depth reached in a random
tree from {Ti} is at most q.

In order to define our main theorem, we will define the following function. For x > 0
define φ(x) as the unique real positive solution to φ(x)2/2 + φ(x)/2 = x. Notice that for
positive integer φ(x), this is the same as

(
φ(x)

2

)
+φ(x) = x. The following is the main theorem

of this paper:

Theorem 15.1. (main theorem) Let T be an adaptive test with completeness c, soundness
s and average query complexity q ≥ 1. Then s+ 1− c ≥ 2−q+φ(q).

Notice that for large q, φ(q) ≈
√

2q, also
√
q ≤ φ(q) ≤

√
2q, so we get that in particular,

s+ 1− c ≥ 2−q+θ(
√
q).

The Complete Graph Test was presented in [ST00]. The test (on a graph with k vertices)
can be described as choosing x1, ...,xk at random, and querying f at xi (for i = 1..k) and
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on xi + xj (for 1 ≤ i < j ≤ k). The test accepts f if for any i, j

f(xi) + f(xj) + f(xi + xj) = 0

In [ST00] it is proven that the Complete Graph Test has perfect completeness and sound-

ness s = 2−(k2). The total number of queries performed is q = k +
(
k
2

)
, so by our definitions,

k = φ(q) and s = 2−q+φ(q). We have the following corollary:

Corollary 15.1. The Complete Graph Test is optimal among all adaptive linearity tests.

Remark. We state and prove all results for functions f : {0, 1}n → {0, 1}. In fact, the
lower bound result on adaptive linearity tests holds for functions f : Fn → F for any finite
field F, and not just F2, with only minor adjustments to the definitions and proofs. We need
to make the following modifications:

1. Define ”ε-far from linear functions” for general fields

2. Test trees should have |F | edges leaving each edge instead of 2

3. The proof that random quadratic functions are far from linear, proved in Section 15.5,
should be slightly modified

Since the results follow simply for any finite field, we chose to present the results over F2 to
make the presentation simpler and clearer.

15.3 Quadratic functions

We will see that in order to prove Theorem 15.1, it will be enough to limit the functions f
to be quadratic. We say a function f is quadratic if it can be written as:

f(x1, ..., xn) =
∑
i,j

ai,jxixj +
∑
i

bixi + c

for some ai,j, bi, c ∈ F2.
In fact, for our usage, we will force our quadratic functions f to have f(0) = 0 (equiva-

lently, c = 0 in the above description). So, throughout this paper, when speaking of quadratic
functions, we actually speak of quadratic functions f with the added condition f(0) = 0.

We will study the dynamics of a test tree T in a linearity test T, in two cases - when
applied to a uniformly random linear function, and when applied to a uniformly random
quadratic function.

The following technical lemma is the key ingredient to the proof of the Theorem 15.1.

Lemma 15.1. Let T be an adaptive linearity test with completeness c and average query
complexity q. Then running T on a random quadratic function returns accept with probability
at least c− 1 + 2−q+φ(q).

In order to prove Theorem 15.1, we will also need the following simple lemma:
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Lemma 15.2. Let f be a random quadratic function. Then the probability that f is not
2−Ω(n)-far from linear functions is 2−Ω(n).

Theorem 15.1 now follows directly from Lemmas 15.1 and 15.2. We sketch now it’s proof
following the two lemmas.

Proof. (of the main theorem) The average probability that T returns accept on a random
quadratic function which is 2−Ω(n)-far from linear functions is at least c−1+2−q+φ(q)−2−Ω(n).
So, there exists some quadratic function f which is 2−Ω(n)-far from linear and on which T
returns accept with probability at least c− 1 + 2−q+φ(q)− 2−Ω(n). Taking n→∞ shows that
s+ 1− c ≥ 2−1+φ(q).

The remainder of the paper is organized as follows. Lemma 15.1 is proved in Section 15.4,
and Lemma 15.2 is proved in Section 15.5.

15.4 Linearity test applied to a random quadratic func-

tion

We study tests and test trees applied to linear and quadratic functions, in order to prove
Lemma 15.1. Let T be an adaptive test with completeness c and average query complexity
q. Let T be a some test tree which is a part of the test T.

We start by studying the dynamics of applying T to linear functions. Assume we know
that f is a linear function, and we are at some vertex v ∈ T , where the path from the root to
v is v0, .., vk−1, v. Assume x(v) is linearly dependant on x(v0), ...,x(vk−1). Since we know f
is linear, we can deduce the value of x(v) from x(v0), ...,x(vk−1), and so we will always follow
the same edge leaving v when we apply T to any linear function. On the other hand, if x(v)
is linearly independent of x(v0), ...,x(vk−1), we know that when we apply T to a random
linear function, either we never reach v, or we have equal chances of taking any of the two
edges leaving v.

This gives rise to the following formal definition:

Definition 15.3. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the linear degree of v, marked l(v), to be the linear rank of x(v0), ...,x(vk−1).

We define LT to be the set of leaves of T to which linear functions can arrive. i.e, v ∈ L if
the path from the root to v, v0, ..., vk−1, v always takes the ”correct” edge leaving any vertex
vi with x(vi) linearly dependent on x(v0), ...,x(vi−1).

The following lemma formalizes the discussion above:

Lemma 15.3. For any test tree T :

1. For any v ∈ LT , the probability that a random linear function will arrive to v is 2−l(v)

2.
∑
v∈LT

2−l(v) = 1
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For v ∈ LT , we define c(v) to be 1 if the value of v is accept, and c(v) = 0 otherwise. Since
the completeness of T is c, we have that the probability that T returns accept on a random
linear function is at least c. On the other hand, for any test tree T in T, the probability

that a random linear function will return accept is exactly
∑
v∈LT

c(v)2−l(v). So, the following

lemma follows:

Lemma 15.4. ET
∑
v∈LT

c(v)2−l(v) ≥ c

where by ET here and throughout the paper we mean the average value of a random test
tree T in T.

We now generalize the concept of linear dependence to quadratic functions.

Definition 15.4. Let x1, ...,xk ∈ {0, 1}n.

1. We say x1, ..., xk are quadratically dependent if there are constants a1, ..., ak ∈ F2,
not all zero, s.t. for any quadratic function f we have: a1f(x1) + ... + akf(xk) = 0.
otherwise will call x1, ..., xk quadratically independent.

2. We say xk is quadratically dependent on x1, ...,xk−1 if there are constants a1, ..., ak−1 ∈
F2 s.t. for any quadratic function f we have: f(xk) = a1f(x1) + ... + ak−1f(xk−1).
Otherwise we say xk is quadratically independent of x1, ...,xk−1.

3. We define the quadratic dimension of x1, ...,xk to be the size of the largest subset of
{x1, ...,xk} which is quadratically independent.

This definition may seem obfuscated, but the following alternative yet equivalent defi-
nition will clarify it. The space of quadratic functions over {0, 1}n is a linear space over
F2. Let M be it’s generating matrix, i.e. the rows of M are a base for the linear space (in
particular, the dimensions of M are (

(
n
2

)
+n)×2n). A column of M corresponds to an input

x ∈ {0, 1}n. Now, x1, ...,xk are quadratically dependent iff the columns corresponding to
them are linearly dependent, and similarly for the other definitions.

Notice that the usual definition of linear dependence is equivalent to this more complex
definition, when applied to the linear space of all linear functions.

We now can repeat the informal discussion at the start of this section, except this time for
quadratic functions, with all the reasoning left intact. Let v ∈ T be a vertex, with path from
the root being v0, ..., vk−1, v. Assume x(v) is quadratically dependent on x(v0), ...,x(vk−1),
and f is any quadratic function. The value of f(x(v)) can be deduced from the already
known values of f(x(v0)), ..., f(x(vk−1)), and so only one edge leaving v will be taken on all
quadratic functions. Alternatively, if x(v) is quadratically independent on x(v0), ...,x(vk−1),
then a random quadratic function either never reaches v, or has equal chances of taking each
of the two edges leaving v.

This leads to the following definition and lemma for quadratic degree of a vertex v ∈ T ,
similar to the ones for linear degree.

Definition 15.5. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the quadratic degree of v, marked q(v), to be the quadratic rank of
x(v0), ...,x(vk−1).
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We define QT to be the set of leaves of T to which quadratic functions can arrive.
Naturally LT ⊆ QT . The following lemma on quadratic degree follows from the discussion
above:

Lemma 15.5. For any test tree T :

1. For any v ∈ QT , the probability that a random quadratic function will arrive to v is
2−q(v)

2.
∑
v∈Q

2−q(v) = 1

3. For any v ∈ LT we have q(v) ≥ l(v)

Last, we mark the depth of a vertex v ∈ T by d(v). Since T has average query complexity
q, we know that for any function f , the average depth of running a random tree T of T on f
is at most q. So, this also holds for a random linear function. However, the average depth a

random linear function arrives on a tree T is exactly
∑

d(v)2−l(v), so the following lemma

follows.

Lemma 15.6. ET
∑
v∈LT

d(v)2−l(v) ≤ q

We now wish to make a connection between q(v) and l(v) for vertices v ∈ LT .
First, we prove that following lemma:

Lemma 15.7. For any x1, ...,xk ∈ {0, 1}n there are coefficients ai,j, bi ∈ F2 s.t. for any
quadratic function f we have:

f(x1 + ...+ xk) =
∑
i,j

ai,jf(xi + xj) +
∑
i

bif(xi)

Proof. Let f(x) by some polynomial of degree d. It’s derivative in the y direction is defined
to be fy(x) = f(x + y)− f(x). It’s easy to see that the degree of fy as a function of x is at
most d − 1. So, taking 3 derivatives from a quadratic function makes it the zero function,
and so in particular for any quadratic function f, we we take it’s derivatives in directions
x,y and z, and evaluate the result at 0, we get that

(((fx)y)z(0) = 0

Opening this expression yields:

f(x + y + z)− f(x + y)− f(x + z)− f(y + z) + f(x) + f(y) + f(z)− f(0) = 0

Since f(0) = 0, we can express f(x + y + z) as a sum of application of f on an element,
or sum of two elements in {x,y, z}. This proves the lemma for k = 3. For k > 3 we use
simple induction.

Now we can bound l(v) in term of q(v). We first prove a result bounding in general the
linear rank of a set by it’s quadratic rank.
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Lemma 15.8. Let {x1, ...,xk} be elements in {0, 1}n. Let l be the their linear rank, and q
their quadratic rank. Then

q ≤
(
l

2

)
+ l

Proof. Let S ⊂ {x1, ...,xk} be a maximal quadratic independent set. |S| = q. The linear
rank of S is also l. Let S ′ ⊂ S be a maximal set of linearly independent elements of S.
|S ′| = l. Assume w.l.o.g that S ′ = {x1, ...,xl}. Since every x ∈ S is linearly dependent on
S ′, it can be written as a sum of some of the elements of S ′. Using Lemma 15.7, we get that
for any x ∈ S there exists coefficients a

(x)
i,j , b

(x)
i ∈ F2 s.t for any quadratic function f :

f(x) =
∑

1≤i<j≤l

a
(x)
i,j f(xi + xj) +

∑
1≤i≤l

b
(x)
i f(xi)

We have assumed that all the elements of S are quadratically independent. For this to
hold, the above equations in the symbolic variables f(xi + xj) and f(xi) must be linearly
independent. So the number of equations q must be at most the number of variables, which
is
(
l
2

)
+ l. So, we get that:

q = |S| ≤
(
l

2

)
+ l

Lemma 15.9. For any leaf v ∈ LT , l(v) ≥ φ(q(v))

Proof. Let v0, ..., vk−1, v be the path in T from the root to v. Let xi = x(vi) for i = 0..k− 1.
Apply lemma 15.8 on {x0, ...,xk−1} to get that q(v) ≤

(
l(v)
2

)
+ l(v). Reversing this formula,

since φ(x) is monotone, we get that l(v) ≥ φ(q(v)).

We can now prove our main technical lemma (Lemma 15.1). We start with some technical
lemmas. We define ψ(x) to be x−φ(x) for x ≥ 1, and 0 for x < 1. Notice that ψ is continuous,
and ψ(x) = x− φ(x) for any non-negative integer x. Hence, using Lemma 15.9 we get that:

Lemma 15.10. For any vertex v in a tree T , q(v)− l(v) ≤ ψ(q(v)).

Lemma 15.11. ψ is increasing and convex.

Proof. Since ψ is continuous and constant for x ≤ 1, it’s enough to prove the claim for x > 1
(for increasing it’s clear, and once we’ve proved ψ is increasing, it shows it’s enough to prove
convexity for x > 1). We first show ψ is increasing.

For x > 1, define y = φ(x), so x = y2/2 + y/2 and ψ(y) = y2/2− y/2.

dψ

dx
=
dψ

dy

dy

dx
=

dψ
dy

dx
dy

=
y − 1/2

y + 1/2

If x > 1 then y = φ(x) > 1, hence dψ
dx
> 0 for x > 1, and so ψ is increasing.

To show that ψ in convex,

d2ψ

dx2
=
d
(
y−1/2
y+1/2

)
dy

dy

dx
=

1

(y + 1/2)3
> 0
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We are now finally ready to prove Lemma 15.1.

Proof. (of Lemma 15.1) We need to prove that any test T with completeness c and average
query complexity q ≥ 1 accepts a random quadratic function with probability at least c −
1 + 2−ψ(q). Let us mark the probability the test accepts a random quadratic function by p.
Let pT mark the probability that a tree T accepts a random quadratic function. pT is at
least the probability that a random quadratic function reaches a leaf in LT which is labeled
accept. So:

pT ≥
∑
v∈LT

c(v)2−q(v)

We now follow to analyze p = ET [pT ].

p ≥ ET [
∑
v∈LT

c(v)2−q(v)] = ET [
∑
v∈LT

2−l(v)c(v)2−q(v)+l(v)]

.
We divide the sum in the right side into two parts, p0 − p1, with p0, p1 ≥ 0, where:

p0 = ET [
∑
v∈LT

2−l(v)2−q(v)+l(v)]

. and
p1 = ET [

∑
v∈LT

2−l(v)(1− c(v))2−q(v)+l(v)]

.
We start by analyzing p1. Since for any v always q(v) ≥ l(v) we have:

p1 ≤ ET [
∑
v∈LT

2−l(v)(1− c(v))]

Recall that by Lemma 15.5 for any tree T we have∑
v∈LT

2−l(v) = 1

and by Lemma 15.4 we have

ET [
∑
v∈LT

2−l(v)c(v)] ≥ c

so we conclude that:
p1 ≤ 1− c

We move to analyze p0. Since ET [
∑
v∈LT

2−l(v)] = 1 and since the function X → 2X is

concave, we have by Jensen’s inequality that:

p0 ≥ 2

ET [

∑
v∈LT

2−l(v)(−q(v) + l(v))]
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Now, we have that q(v)− l(v) ≤ ψ(q(v)) by Lemma 15.11, and also by the same lemma,
since q(v) ≤ d(v), we get ψ(q(v)) ≤ ψ(d(v)). So we get:

ET [
∑
v∈LT

2−l(v)(q(v)− l(v))] ≤ ET [
∑
v∈LT

2−l(v)ψ(d(v))]

.
Since by Lemma 15.11 ψ is convex, we get that again by Jensen’s inequality we get that

this is at most ψ(ET [
∑
v∈LT

2−l(v)d(v)]). By Lemma 15.6

ET [
∑
v∈LT

2−l(v)d(v)] ≤ q

where q is the average query complexity of T. So, we conclude that p0 ≥ 2−ψ(q), and in total

p ≥ p0 − p1 ≥ 2−ψ(q) + c− 1

15.5 Random quadratic function is far from linear

In this section we prove Lemma 15.2, i.e. that a random quadratic function is far from linear.
We will use commonly known facts about quadratic functions.

Any quadratic function can be written as:

f(x) = xtAx+ < x, b >

The correlation of f with some linear function g is the g-th Fourier coefficient of f . The
Fourier coefficients of quadratic functions are well studied. In particular, it is known that all
the Fourier coefficients of f have the same absolute value, and that the number of non-zero
Fourier coefficients is 2rank(A+At). So, in order to show that f has no large correlation with
some linear function, it’s enough to show that B = A + At has high rank. In particular, in
order to show that f is 2−Ω(n)-far from linear functions, we need to show that B has rank
Ω(n). We will show that the probability that a random quadratic function has rank less
than n/4 is 2−Ω(n). We will use the following lemma:

Lemma 15.12. The number of matrices of rank at most k is at most nk2nk.

Using Lemma 15.12, it’s easy to prove Lemma 15.2. The number of matrices of rank
at most n/4 is at most 2n

2/4(1+o(1)). For a random quadratic function, B is a random
symmetric matrix with zero diagonal, and so the probability that B has rank less than
n/4 is 2−n

2/4(1+o(1)) = 2−Ω(n).
Now we finish by proving Lemma 15.12.
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Proof. Let B be a matrix of rank at most k. There are
(
n
k

)
options to choose k rows which

span the row span of the matrix, each other row have at most 2k options since it must be
in the row span of k specific rows. So, the number of possibilities for rank k matrices is at
most: (

n

k

)
(2k)

n−k ≤ nk2nk
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